预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

南开中学2020届高三数学统练(12)一、选择题(共9小题;共45分)1.设,,则A.B.C.D.【答案】B【解析】【详解】分析:求出,得到的范围,进而可得结果.详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.2.设是定义域为的偶函数,且在单调递减,则()A.B.C.D.【答案】C【解析】【分析】由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.3.已知a,b,c,d是四个互不相等的正实数,满足,且,则下列选项正确的是A.B.C.D.【答案】D【解析】分析】通过取特殊值,依次排除选项,得到结果.【详解】选项:取,,,则,,可知错误;选项:取,,,则,,可知错误;选项:取,,,则,,又,可知错误;选项:设,,则则要证,只需证即证:,又,只需即可即证:又,则只需即可即综上所述:,可知正确.本题正确选项:【点睛】本题考查不等式相关问题,通过取特殊值排除的方法是较简单的方法.证明的难点在于能够将利用平方差公式进行分子有理化,将问题进行转化.4.已知随机变量满足P(=1)=pi,P(=0)=1—pi,i=1,2.若0<p1<p2<,则A.<,<B.<,>C.>,<D.>,>【答案】A【解析】∵,∴,∵,∴,故选A.【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定的取值情况,然后利用排列,组合与概率知识求出取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量服从两点分布,由两点分布数学期望与方差的公式可得A正确.5.如图,点列{An},{Bn}分别在某锐角的两边上,且,.()若A.是等差数列B.是等差数列C.是等差数列D.是等差数列【答案】A【解析】【详解】表示点到对面直线的距离(设为)乘以长度的一半,即,由题目中条件可知的长度为定值,那么我们需要知道的关系式,由于和两个垂足构成了直角梯形,那么,其中为两条线的夹角,即为定值,那么,,作差后:,都为定值,所以为定值.故选A.【此处有视频,请去附件查看】6.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A.B.C.D.【答案】A【解析】【分析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,,,当时,,则当时,,单减,当时,,单增;当时,,,当,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题7.已知,函数,若函数恰有三个零点,则()A.B.C.D.【答案】C【解析】【分析】当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当时,,得;最多一个零点;当时,,,当,即时,,在,上递增,最多一个零点.不合题意;当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,,.故选.【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.8.梯形中,,点在直线上,点在直线上,且,则的最小值为()A.B.C.D.【答案】A【解析】【分析】根据平面向量基本定理,将当作两组基底向量,再根据向量线性运算的加法与减法法则,代换出,结合,化简得,将表示成的关系式,再结合基本不等式求解即可【详解】,,由,化简得,则,当且仅当时取“=”号故选:A【点睛】本题考查平面向量基本定理的应用,向量的加法与减法的线性运算,基本不等式求最值,运算能力,属于难题9.设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:①在()有且仅有3个极大值点②在()有且仅有2个极小值点③在()单调递增④的取值范围是[)其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④【答案】D【解析】【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得,结合正弦函数的图像分析得出答案.【详解】当时,,∵f(x)在有且仅有5个零点,∴,∴,故④正确,由,知时,令时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确;因此由选项可知只需判断③是否正确即可得到答案