预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

北京四中2014-2015学年上学期高二年级期中考试数学试卷(理科)试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,满分共计150分考试时间:120分钟卷(Ⅰ)一、选择题(本大题共8小题,每小题5分,共40分。)1.抛物线的准线方程为()A.x=2B.x=-2C.x=4D.x=-42.若双曲线方程为,则其渐近线方程为()A.B.C.D.3.已知点M的一个极坐标为,下列给出的四个极坐标仍能表示点M的是()A.B.C.D.4.“”是“方程表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.若椭圆的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为()A.B.C.D.6.设椭圆C:两个焦点分别为F1,F2,若C上存在点P满足::=4:3:2,则椭圆C的离心率等于()A.B.C.D.7.已知点P是抛物线上的动点,且点P在y轴上的射影是M,点A,则的最小值是()A.B.4C.D.58.若有两个焦点,的圆锥曲线上存在点P,使成立,则称该圆锥曲线上存在“”点,现给出四个圆锥曲线:①②③④其中存在“”点的圆锥曲线有()A.①③B.①④C.②③D.②④二、填空题(本大题共6小题,每小题5分,共30分。)9.抛物线的焦点到准线的距离是______________。10.命题“,”的否定为___________________。11.已知双曲线的中心在原点,焦距为2,实轴长为2,则该双曲线的标准方程是__________________。12.椭圆的焦点为,,点P在椭圆上,若,则=____________;∠的大小为___________________。13.过点(0,-4)且与直线y=4相切的圆的圆心轨迹方程是______________________。14.已知椭圆的右焦点为F,斜率为1的直线过F且交椭圆于A、B两点,若与=(3,-1)共线,则此椭圆的离心率为_________________。三、解答题(本大题共3小题,每小题10分,共30分。)15.已知椭圆C的中心在坐标原点,长轴在x轴上,离心率为,且C上一点到C的两个焦点的距离之和为4。(1)求椭圆C的方程;(2)已知斜率为的直线l与C相切,求直线l的方程。16.若抛物线C:的焦点在直线l:2x+y-2=0上。(1)求抛物线C的方程;(2)求直线l被抛物线C所截的弦长。17.已知椭圆C:的两个焦点分别为F1,F2,离心率为,且过点(2,)。(1)求椭圆C的标准方程;(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值。卷(Ⅱ)一、选择题(本大题共3小题,每小题5分,共15分。)1.命题,使得直线x-y+t=0与圆x2+y2=1相交;命题,双曲线=1的离心率为。则下面结论正确的是()A.p是假命题B.是真命题C.p是假命题D.p是真命题2.设斜率为2的直线l过抛物线的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为()A.B.C.D.3.过抛物线C:的焦点F作直线交C于P,Q两点,若线段PF与QF的长度分别为m,n,则的最小值为()A.B.C.D.二、填空题(本大题共3小题,每小题5分,共15分。)4.经过点A(3,1)作直线l,它与双曲线只有一个公共点,这样的直线l有______________条。5.曲线的极坐标方程=化为直角坐标方程为_____________。6.抛物线上存在关于直线y=x对称的相异两点A,B,则等于_________。三、解答题(本大题共2小题,每小题10分,共20分。)7.已知椭圆C:+=1(a>b>0)经过点(1,),离心率为。(1)求椭圆C的方程;(2)直线与椭圆C交于A,B两点,点M是椭圆C的右顶点。直线AM与直线BM分别与y轴交于点P,Q,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由。8.设椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:x3-24y-20-4-(1)求C1,C2的标准方程;(2)设直线l与椭圆C1交于不同两点M,N,且,请问是否存在这样的直线l过抛物线C2的焦点F?若存在,求出直线l的方程;若不存在,说明理由。试题答案一、选择题(本大题共8小题,每小题5分,共40分)12345678ADDBBACB二、填空题(本大题共6小题,每小题5分,共30分)9210,111221314三、解答题(本大题共3小题,每小题10分,共30分)15.(1);(2)16.(1);(2)17.(1)解:由已知,所以。所以。所以,即。因为椭圆C过点(2,),得。所以椭圆C的方程为。(2)证明:由