预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

北京市重点中学2014-2015学年高二下学期期中数学试卷(理科)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.)1.已知复数z满足:zi=2+i(i是虚数单位),则z的虚部为()A.2iB.﹣2iC.2D.﹣2考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.解答:解:由zi=2+i,得,∴z的虚部是﹣2.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有()种不同的取法.A.120B.16C.64D.39考点:排列、组合及简单计数问题.专题:计算题;排列组合.分析:利用分类加法原理,即可得出结论.解答:解:由于书架上有3+5+8=16本书,则从中任取一本书,共有16种不同的取法.故选B.点评:本题先确定拿哪种类型的书,考查分类计数原理的应用,考查两种原理的区别.3.已知曲线y=﹣3lnx+1的一条切线的斜率为,则切点的横坐标为()A.3B.2C.1D.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:求出函数的定义域和导数,利用导数是切线的斜率进行求解即可.解答:解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣,由f′(x)=﹣=,即x2﹣x﹣6=0,解得x=3或x=﹣2(舍),故切点的横坐标为3,故选:A.点评:本题主要考查导数的几何意义的应用,求函数的导数,解导数方程即可,注意定义域的限制.4.由直线y=,y=2,曲线y=及y轴所围成的封闭图形的面积是()A.2ln2B.2ln2﹣1C.ln2D.考点:定积分.专题:导数的综合应用.分析:利用定积分的几何意义,首先利用定积分表示出图形的面积,求出原函数,计算即可.解答:解:由题意,直线y=,y=2,曲线y=及y轴所围成的封闭图形的面积如图阴影部分,面积为=lny=ln2﹣ln=2ln2;故选A.点评:本题考查定积分的运用,利用定积分的几何意义求曲边梯形的面积,考查了学生的计算能力,属于基础题.5.以下说法正确的是()A.在用综合法证明的过程中,每一个分步结论都是结论成立的必要条件B.在用综合法证明的过程中,每一个分步结论都是条件成立的必要条件C.在用分析法证明的过程中,每一个分步结论都是条件成立的充分条件D.在用分析法证明的过程中,每一个分步结论都是结论成立的必要条件考点:分析法和综合法.专题:证明题.分析:利用综合法证题思路(执因索果)与分析法的证题思路(执果索因)及充分条件与必要条件的概念即可得到答案.解答:解:设已知条件为P,所证结论为Q,综合法的证题思路为执因索果,即P⇒Q1⇒Q2⇒…⇒Qn⇒Q,∴在用综合法证明的过程中,每一个分步结论都是条件成立的必要条件,故A错误,B正确;分析法的证题思路是执果索因,即Q⇐Qn⇐…⇐Q2⇐Q1⇐P显然,在用分析法证明的过程中,每一个分步结论都是条件成立的必要条件,故C错误;在用分析法证明的过程中,每一个分步结论都是结论成立的充分条件.故选B.点评:本题考查分析法与综合法的应用,考查充分条件与必要条件的概念,属于中档题.6.设函数f(x)=xlnx,则f(x)的极小值点为()A.x=eB.x=ln2C.x=e2D.x=考点:利用导数研究函数的极值.专题:计算题;导数的概念及应用.分析:确定函数的定义域,求导函数,确定函数的单调性,即可求得函数f(x)的极小值点.解答:解:函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得x=∴0<x<时,f′(x)<0,x>时,f′(x)>0∴x=时,函数取得极小值,故选:D.点评:本题考查导数知识的运用,考查函数的极小值点,考查学生分析解决问题的能力,属于中档题.7.已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,以此类推,第5个等式为()A.24×1×3×5×7=5×6×7×8B.25×1×3×5×7×9=5×6×7×8×9C.24×1×3×5×7×9=6×7×8×9×10D.25×1×3×5×7×9=6×7×8×9×10考点:类比推理.专题:综合题;推理和证明.分析:根据已知可以得出规律,即可得出结论.解答:解:∵21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,∴第5个等式为25×1×3×5×7×9=6×7×8×9×10故选:D点评:此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.对于等式,要注意分别发现:等式的左边和右边的规律.8.在复平面内