预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题(题型注释)1.在正方体中任取两条棱,则这两条棱为异面直线的概率为()A.B.C.D.【答案】B.【解析】试题分析:从正方体的12条棱中,任取两条棱,有种不同的方法,因为与已知棱成异面直线的有4条,所以共有对异面直线,则这两条棱为异面直线的概率.考点:古典概型.2.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588B.480C.450D.120【答案】B.【解析】试题分析:由频率分布直方图可知,该模块测试成绩不少于60分的频率为,所以该模块测试成绩不少于60分的学生人数为.考点:频率分布直方图.3..()A.B.C.1D.【答案】A.【解析】试题分析:由,可得.考点:二项式定理.4.若直线与曲线有且仅有三个交点,则的取值范围是()A.B.C.D.【答案】B.【解析】试题分析:由题意得,曲线C是由椭圆上半部分和双曲线上半部分组成,且双曲线的渐近线方程为,与直线平行;当直线过右顶点时,直线与曲线C有两个交点,此时,;当直线与椭圆相切时,直线与曲线C有两个交点,此时;由图像可知,时,直线与曲线C有三个交点.考点:直线与圆锥曲线的位置关系.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)5.过点、的直线的斜率为______________.【答案】2.【解析】试题分析:由斜率公式得:.考点:直线的斜率公式.6.若是虚数单位,复数满足,则的虚部为_________.【答案】.【解析】试题分析:,,则的虚部为.考点:复数的除法.7.正四面体的所有棱长都为2,则它的体积为________.【答案】.【解析】试题分析:过作,则是的中心,连接,则,,在中,,所以.考点:多面体的体积.8.以为圆心且过原点的圆的方程为_____________.【答案】.【解析】试题分析:由题意,得所求圆的半径,则所求圆的标准方程为.考点:圆的标准方程.9.某几何体的三视图如图所示,则该几何体的体积为__________.【答案】.【解析】试题分析:由三视图可知,该几何体是一个侧放的圆柱,底面半径为1,高为5;则该几何体的体积.考点:三视图、圆柱的体积.10.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.【答案】.【解析】试题分析:设圆锥的底面半径和高为,则其母线长;所以圆锥的侧面积,底面面积,则它的侧面积与底面积的比为.考点:圆锥的侧面积公式.11.正方体中,二面角的大小为__________.【答案】.【解析】试题分析:二面角,即半平面与所成的图形,交线为,易知,所以是二面角的平面角,且,即二面角的大小为.考点:二面角的平面角.12.双曲线的顶点到其渐近线的距离等于_________.【答案】.【解析】试题分析:双曲线的顶点为,渐近线方程为,即;则顶点到其渐近线的距离为.考点:双曲线的性质、点到直线的距离公式.13.已知球的半径为1,、是球面上两点,线段的长度为,则、两点的球面距离为________.【答案】.【解析】试题分析:设球心为O,连接,则是等腰三角形,且,则,所以、两点的球面距离为.考点:两点的球面距离.14.在长方体中,已知,为的中点,则直线与平面的距离是___________.【答案】9.【解析】试题分析:过作,因为,所以,则,的长度即为直线与平面的距离;在中,,;在中,,,,即直线与平面的距离为9.考点:直线到平面的距离.15.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有人的选派方法种数是___________(用数字作答).【答案】590.【解析】试题分析:骨科、脑外科和内科医生都至少有人的选派方法可分以下几类:3名骨科、1名脑外科和1名内科医生,有种;1名骨科、3名脑外科和1名内科医生,有种;1名骨科、1名脑外科和3名内科医生,有种;2名骨科、2名脑外科和1名内科医生,有种;1名骨科、2名脑外科和2名内科医生,有种;2名骨科、1名脑外科和2名内科医生,有种;由分类加法计数原理得,共有种.考点:组合.16.已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为_________________.【答案】.【解析】试题分析:设,则,两式相减,得,又因为的中点为,且斜率,所以,又,所以的方程为.考点:点差法.17.设实数满足则的最大值为____________.【答案】.【解析】试题分析::画出不等式组表示的可行