预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年重庆市巫溪中学高一(下)期中数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列0,1,0,1,0,1,0,1,…的一个通项公式是()A.B.C.D.2.向量=(5,2),=(﹣4,﹣3),=(x,y),若3﹣2+=,则=()A.(23,12)B.(7,0)C.(﹣7,0)D.(﹣23,﹣12)3.已知向量,不共线,=k+(k∈R),=+,如果∥,那么()A.k=﹣1且与同向B.k=﹣1且与反向C.k=1且与同向D.k=1且与反向4.在等差数列{an}中,a3=0,a7﹣2a4=﹣1,则公差d等于()A.﹣2B.C.2D.﹣5.在△ABC中,已知sin2B﹣sin2C﹣sin2A=sinAsinC,则角B的大小为()A.150°B.30°C.120°D.60°6.若点M是△ABC的重心,则下列向量中与共线的是()A.B.C.D.7.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形8.在△ABC中,A=60°,b=1,S△ABC=,则=()A.B.C.D.29.已知公差不为零的等差数列{an}与公比为q的等比数列{bn}有相同的首项,同时满足a1,a4,b3成等比,b1,a3,b3成等差,则q2=()A.B.C.D.10.设Sn表示等差数列{an}的前n项和,已知,那么等于()A.B.C.D.11.已知数列{an}的通项an=10n+5,n∈N*,其前n项和为Sn,令,若对一切正整数n,总有Tn≤m成立,则实数m的最小值是()A.4B.3C.2D.不存在12.△ABC中,c是a与b的等差中项,sinA,sinB,sinC依次为一等比数列的前n项,前2n项,前3n项的和,则cosC的值为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知点A(1,﹣2),若向量与=(2,3)同向,||=2,则点B的坐标为.14.若,则=.15.数列{an}的a1=,an+1=,{an}的通项公式是.16.已知数列{an}的通项公式an=﹣n2+13n﹣.当a1a2a3+a2a3a4+a3a4a5+…+anan+1an+2取得最大值时,n的值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)平面内给定三个向量=(1,3),=(﹣1,2),=(2,1).(1)求满足=m+n的实数m,n;(2)若(+k)∥(2﹣),求实数k.18.(12分)已知数列{an}满足a1=2,an+1=4an+3,求数列{an}的通项公式.19.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.20.(12分)数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1).(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn.21.(12分)等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{cn}为等比数列,c1=1,且c2S2=64,c3S3=960.(1)求an与cn;(2)求++…+.22.(12分)数列{an}中,,且.(1)求a3,a4;(2)求数列{an}的通项an;(3)若数列{bn}的前n项和,求数列{anbn}的前n项和Tn.2016-2017学年重庆市巫溪中学高一(下)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列0,1,0,1,0,1,0,1,…的一个通项公式是()A.B.C.D.【考点】82:数列的函数特性.【分析】通过观察可得:奇数项为0,偶数项为1,即可得出通项公式.【解答】解:0,1,0,1,0,1,0,1,…的一个通项公式是an=.故选:A.【点评】本题考查了通过观察求数列的通项公式,考查了推理能力与计算能力,属于基础题.2.向量=(5,2),=(﹣4,﹣3),=(x,y),若3﹣2+=,则=()A.(23,12)B.(7,0)C.(﹣7,0)D.(﹣23,﹣12)【考点】9H:平面向量的基本定理及其意义.【分析】根据向量的四则运算法则,即可求得向量.【解答】解:3﹣2+=0,则(15,6)﹣(﹣8,﹣6)+(x+y)=,∴,解得:,则=(x,y)=(﹣23,﹣12),故选D.【点评】本题考查向量的四则运算法则,考查计算能力,属于基础题.