预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年重庆市六校联考高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.=()A.B.C.D.2.已知集合M={1,2},N={2,3,4},若P=M∪N,则P的子集个数为()A.14B.15C.16D.323.已知函数f(x)=,若f(﹣1)=f(1),则实数a的值为()A.1B.2C.0D.﹣14.若函数f(x)=ax2﹣bx+1(a≠0)是定义在R上的偶函数,则函数g(x)=ax3+bx2+x(x∈R)是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数5.设a=log2,b=()3,c=3,则()A.c<b<aB.a<b<cC.c<a<bD.b<a<c6.已知tan(α﹣β)=,tan(﹣β)=,则tan(α﹣)等于()A.B.C.D.7.方程x﹣logx=3和x﹣logx=3的根分别为α,β,则有()A.α<βB.α>βC.α=βD.无法确定α与β大小8.函数f(x)=2sin(2x+)的图象为M,则下列结论中正确的是()A.图象M关于直线x=﹣对称B.由y=2sin2x的图象向左平移得到MC.图象M关于点(﹣,0)对称D.f(x)在区间(﹣,)上递增9.函数y=sin2(x﹣)的图象沿x轴向右平移m个单位(m>0),所得图象关于y轴对称,则m的最小值为()A.πB.C.D.10.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递减,若实数a满足f(3|2a+1|)>f(﹣),则a的取值范围是()A.(﹣∞,﹣)∪(﹣,+∞)B.(﹣∞,﹣)C.(﹣,+∞)D.(﹣,﹣)11.已知α∈[,],β∈[﹣,0],且(α﹣)3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin(+β)的值为()A.0B.C.D.112.若区间[x1,x2]的长度定义为|x2﹣x1|,函数f(x)=(m∈R,m≠0)的定义域和值域都是[a,b],则区间[a,b]的最大长度为()A.B.C.D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.13.计算:log3+lg4+lg25+(﹣)0=.14.已知扇形的面积为4cm2,扇形的圆心角为2弧度,则扇形的弧长为.15.若α∈(0,π),且cos2α=sin(+α),则sin2α的值为.16.已知正实数x,y,且x2+y2=1,若f(x,y)=,则f(x,y)的值域为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集U=R,函数的定义域为集合A,集合B={x|5≤x<7}(1)求集合A;(2)求(∁UB)∩A.18.在平面直角坐标系xOy中,若角α的始边为x轴的非负半轴,其终边经过点P(2,4).(1)求tanα的值;(2)求的值.19.已知二次函数f(x)=mx2+4x+1,且满足f(﹣1)=f(3).(1)求函数f(x)的解析式;(2)若函数f(x)的定义域为(﹣2,2),求f(x)的值域.20.已知函数f(x)=sin2ωx+2cosωxsinωx+sin(ωx+)sin(ωx﹣)(ω>0),且f(x)的最小正周期为π.(1)求ω的值;(2)求函数f(x)在区间(0,π)上的单调增区间.21.已知函数f(x)=log2()﹣x(m为常数)是奇函数.(1)判断函数f(x)在x∈(,+∞)上的单调性,并用定义法证明你的结论;(2)若对于区间[2,5]上的任意x值,使得不等式f(x)≤2x+m恒成立,求实数m的取值范围.22.已知函数f(x)=a(|sinx|+|cosx|)﹣sin2x﹣1,若f()=﹣.(1)求a的值,并写出函数f(x)的最小正周期(不需证明);(2)是否存在正整数k,使得函数f(x)在区间[0,kπ]内恰有2017个零点?若存在,求出k的值,若不存在,请说明理由.2016-2017学年重庆市六校联考高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.=()A.B.C.D.【考点】运用诱导公式化简求值.【分析】根据诱导公式可知cos=cos(π+),进而求得答案.【解答】解:cos=cos(π+)=﹣cos=﹣故选D.2.已知集合M={1,2},N={2,3,4},若P=M∪N,则P的子集个数为()A.14B.15C.16D.32【考点】并集及其运算.【分析】根据并集的定义写出P=M∪N,再计算P的子集个数.【解答】解:集合M={1,2},N={2,3,4},则P=M∪N={1,2,3,4},∴P的子集有24=16个.故答案为:C.3.已知函数f(x)=,若f(﹣1)=f(1)