预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年河南省六市联考高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3)B.(1,3]C.上,则输入的实数x的取值范围是()A.C.D.9.某同学用“随机模拟方法”计算曲线y=lnx与直线x=c,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间上的均匀随机数xi和10个区间上的均匀随机数yi(i∈N*,1≤i≤10),其数据如下表的前两行.x2.501.011.901.222.522.171.891.961.362.22y0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是()A.(e﹣1)B.(e﹣1)C.(e+1)D.(e+1)10.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱11.己知函数f(x)=sinx+cosx(x∈R),先将y=f(x)的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x=对称,则θ的最小值为()A.B.C.D.12.已知双曲线Γ1:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,椭圆Γ2:+=1的离心率为e,直线MN过F2与双曲线交于M,N两点,若cos∠F1MN=cos∠F1F2M,=e,则双曲线Γ1的两条渐近线的倾斜角分别为()A.30°或150°B.45°或135°C.60°或120°D.15°或165°二、填空题(共4小题,每小题5分,满分20分)13.向量=(﹣1,1),=(1,0),若(﹣)⊥(2+λ),则λ=.14.已知{an}是首项为32的等比数列,Sn是其前n项和,且=,则数列{|log2an|}前10项和为.15.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为.16.若曲线C1:y=ax2(a>0)与曲线C2:y=ex存在公切线,则a的取值范围为.三、解答题(共5小题,满分60分)17.已知在△ABC中,角A,B,C的对边分别为a,b,c,且asinB+bcosA=0.(1)求角A的大小;(2)若,求△ABC的面积.18.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见表,规定:A,B,C三级为合格等级,D为不合格等级.百分制85分及以上70分到84分60分到69分60分以下等级ABCD为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计,按照的分组作出频率分布直方图如图所示,样本中分数在80分及以上的所有数据的茎叶图如图所示.(1)求n和频率分布直方图中的x,y的值;(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;(3)在选取的样本中,从A,C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.19.如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C﹣ADE体积最大时,求二面角D﹣AE﹣B的余弦值.20.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,右焦点F(1,0).(Ⅰ)求椭圆C的方程;(Ⅱ)点P在椭圆C上,且在第一象限内,直线PQ与圆O:x2+y2=b2相切于点M,且OP⊥OQ,求点Q的纵坐标t的值.21.已知函数f(x)=exsinx﹣cosx,g(x)=xcosx﹣ex,(其中e是自然对数的底数).(1)∀x1∈,∃x2∈使得不等式f(x1)+g(x2)≥m成立,试求实数m的取值范围;(2)若x>﹣1,求证:f(x)﹣g(x)>0.四、选修4-4:坐标系与参数方程22.在极坐标系中,曲线C的方程为ρ2=,点R(2,).(Ⅰ)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直