预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年山西省晋中市名校联考高二(下)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z=的共辗复数的虚部为()A.﹣iB.﹣C.iD.2.设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是()A.{1,2,3,4,5}B.{1,2,3}C.{3,4}D.{4,5,6,7}3.下边是高中数学常用逻辑用语的知识结构图,则(1)、(2)处依次为()A.命题及其关系、或B.命题的否定、或C.命题及其关系、并D.命题的否定、并4.已知球O的半径为R,体积为V,则“R>”是“V>36π”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也必要条件5.在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是()A.B.C.D.6.执行如图所示的程序框图,则输出的x等于()A.16B.8C.4D.27.在数列{an}中,若=+,a1=8,则数列{an}的通项公式为()A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)8.已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y﹣m)2=13(m<3)所截得的弦长为4,且P为圆C上任意一点,则|PA|的最大值为()A.﹣B.5+C.2+D.+9.某几何体的三视图如图所示,则该几何体的表面积为()A.30B.31.5C.33D.35.510.现有3个命题:P1:函数f(x)=lgx﹣|x﹣2|有2个零点p2:∃x∈(,),sinx+cosx=p3:若a+b=c+d=2,ac+bd>4,则a、b、c、d中至少有1个为负数.那么,这3个命题中,真命题的个数是()A.0B.1C.2D.311.已知定义在R上的函数f(x)满足f(x)=(x+2),且当﹣l≤x≤1时,f(x)=2|x|,函数g(x)=x+,实数a,b满足b>a>3.若∀x1∈,∃x2∈,使得f(x1)=g(x2)成立,则b﹣a的最大值为()A.B.1C.D.212.设F1,F2分别为双曲线的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=2b,(O为坐标原点),则该双曲线的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.若复数z=,则|z|=.14.若拋物线x2=24y上一点(x0,y0),到焦点的距离是该点到x轴距离的4倍,则y0=.15.已知表示不大于x的最大整数,设函数f(x)=,得到下列结论,结论1:当2<x<3时,f(x)max=﹣1.结论2:当4<x<5时,f(x)max=1结论3:当6<x<7时,f(x)max=3…照此规律,结论6为.16.定义在(0,+∞)上的函数f(x)满足x2f′(x)+1>0,f(1)=5,则不等式的解集为.三、解答题:本大题共8小题,共70分.解答应写出必要的文字说明或推理、验算过程.请考试从A,B两题中任选一题作答,17.已知直线l的参数方程为(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆N的方程为ρ2﹣6ρsinθ=﹣8(1)求圆N的圆心N的极坐标;(2)判断直线l与圆N的位置关系.18.已知不等式|x﹣2|<|x|的解集为(,+∞)(1)求实数m的值(2)若不等式a﹣5<|x+1|﹣|x﹣m|<a+2对x∈(0,+∞)恒成立,求实数a的取值范围.19.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.20.已知不等式|x|+|x﹣3|<x+6的解集为(m,n).(1)求m,n的值;(2)若x>0,y>0,nx+y+m=0,求证:x+y≥16xy.21.在△ABC中,a、b、c分别为内角A、B、C的对边,bsinA=(3b﹣c)sinB(1)若2sinA=3sinB,且△ABC的周长为8,求c(2)若△ABC为等腰三角形,求cos2B.22.如图,在各棱长均为4的直四棱柱ACCD﹣A1B1C1D1中,底面ABCD为菱形,∠BAD=60°,E为梭BB1上一点,且BE=3EB1(1)求证:平面ACE丄平面BDD1B1(2)平面AED1将四棱柱ABCD﹣A1B1C1D1分成上、下两部分.求这两部分的休积之比(梭台的体积公式为V=(S′++S)h,其中S',S分別为上、下底面面积,h为棱台的高)23.如图,已知椭圆+y2=1(a>1)的长轴长是短轴长的2倍,右焦点为F,点B,C分