预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

北京市朝阳区2022~2023学年度第一学期期末质量检测高一数学2023.1(考试时间120分钟满分150分)本试卷分为选择题(共50分)和非选择题(共100分)两部分考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共50分)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若,则下列各式一定成立的是()A.B.C.D.【答案】C【解析】【分析】结合特殊值以及幂函数的性质确定正确答案.【详解】AD选项,,则,但,所以AD选项错误.B选项,若,则,所以B选项错误.C选项,若,由于在上递增,所以,所以C选项正确.故选:C2.若角满足,则角是()A第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】B【解析】【分析】根据三角函数四个象限符号确定.【详解】为第二,三象限角或者轴负半轴上的角;又为第二,四象限角所以为第二象限角.故选:B3.下列函数中,在其定义域上单调递增且值域为的是()A.B.C.D.【答案】B【解析】【分析】分别求出每个选项的单调性和值域即可得出答案.【详解】对于A,在定义域上单调递增且值域为,故A不正确;对于B,在定义域上单调递增值域为,故B正确;对于C,由双勾函数的图象知,在上单调递增,在上单调递减,故C不正确;对于D,的值域为,故D不正确.故选:B.4.设集合,集合,则A与B的关系为()AB.C.D.【答案】A【解析】【分析】根据终边相同的角的知识确定正确答案.【详解】由于集合,所以集合表示终边落在轴上的角的集合;由于集合,所以集合表示终边落在轴上的角的集合;所以.故选:A5.声强级(单位:)出公式给出,其中I为声强(单位:).若平时常人交谈时的声强约为,则声强级为()A.B.C.D.【答案】C【解析】【分析】根据对数运算求得正确答案.【详解】依题意.故选:C6.已知,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】通过基本不等式可得充分性成立,举出反例说明必要性不成立.【详解】当,时,,则当时,有,解得,充分性成立;当,时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.故选:A.7.已知函数,有如下四个结论:①函数在其定义域内单调递减;②函数的值域为;③函数的图象是中心对称图形;④方程有且只有一个实根.其中所有正确结论的序号是()A.①②B.②③C.①③D.③④【答案】D【解析】【分析】根据函数的单调性、值域、对称性以及方程的根等知识确定正确答案.【详解】的定义域为,,所以在上递增,①错误.由于,,所以的值域为.由于,所以是奇函数,图象关于原点对称,③正确.由得构造函数,在上单调递增,,所以在上存在唯一零点,也即方程有且只有一个实根,④正确.所以正确结论的序号是③④.故选:D8.已知角为第一象限角,且,则的取值范围是()A.B.C.D.【答案】A【解析】【分析】先确定的取值范围,由此求得的取值范围.【详解】由于角为第一象限角,所以,所以,由于,所以,所以.故选:A9.某厂以x千克/小时速度匀速生产某种产品(生产条件要求),每小时可获得利润元,要使生产100千克该产品获得的利润最大,该厂应选取的生产速度是()A.2千克/小时B.3千克/小时C.4千克/小时D.6千克/小时【答案】C【解析】【分析】生产100千克该产品获得的利润为,令,由换元法求二次函数最大值即可.【详解】由题意得,生产100千克该产品获得的利润为,,令,,则,故当时,最大,此时.故选:C10.定义在上的偶函数满足,且在上单调递增,,则a,b,c的大小关系是()A.B.C.D.【答案】A【解析】【分析】由得,则的周期为2,结合函数的奇偶性,即可化简a,b,c,最后根据单调性比较大小.【详解】由得,∴的周期为2,又为偶函数,则,,∵,在上单调递增,∴.故选:A第二部分(非选择题共100分)二、填空题共6小题,每小题5分,共30分.11.已知集合,集合,则____________.【答案】【解析】【分析】根据并集的定义运算即可.【详解】因为,,所以,故答案为:12.已知角,若,则__________;__________.【答案】①.##②.【解析】【分析】由条件结合诱导公式求,根据特殊角三角函数值求出,即可.【详解】因为,所以,故,又,所以,所以,故答案为:,.13.设且,,则的最小值为__________.【答案】2【解析】【分析】对利用对数运算公式,得到,再由基本不等式以及条件中的,得到答案.【详解】因为且,所以且而,且所以由基本不等式可得,当且仅当,即时,等号成立.【点睛】本题考查对数运算公式,基本不等式求和的最小值,属于简单题.14.设函