预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

东城区2022-2023学年度第一学期期末统一检测高二数学本试卷,满分100分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共36分)一、选择题共12小题,每小题3分,共36分.在每个小题列出的四个选项中,选出符合题目要求的一项.1.已知向量,,且,那么实数的值为()A.B.C.D.【答案】B【解析】【分析】根据平行关系可知,由向量坐标运算可构造方程求得结果.【详解】,,,解得:.故选:B.2.已知直线的倾斜角为()度A.45B.135C.60D.90【答案】A【解析】【分析】根据给定的直线方程,求出其斜率,再求出倾斜角作答.【详解】直线的斜率为1,所以直线的倾斜角为45度.故选:A3.抛物线的准线方程是()A.B.C.D.【答案】C【解析】【分析】根据抛物线方程可直接求得结果.【详解】由抛物线方程可知其准线方程为:.故选:C.4.2021年9月17日,北京2022年冬奥会和冬残奥会主题口号正式对外发布——“一起向未来”(英文为:“TogetherforaSharedFuture”),这是中国向世界发出的诚挚邀约,传递出14亿中国人民的美好期待.“一起向未来”的英文表达是:“TogetherforaSharedFuture”,其字母出现频数统计如下表:字母togehrfasdu频数32142422112合计频数为24,那么字母“”出现的频率是()A.B.C.D.【答案】B【解析】【分析】用字母“”出现的频数除以总数就是所求频率.【详解】由图中表格可知,字母“”出现的频数为4,合计总频数为24,所以字母“”出现的频率为.故选:B5.设为数列的前项和,已知,,那么()A.B.C.D.【答案】A【解析】【分析】由可直接求得结果.【详解】由得:,.故选:A.6.已知在长方体中,,,那么直线与平面所成角的正弦值为()A.B.C.D.【答案】A【解析】【分析】由长方体性质易知为与面所成的角,进而求其正弦值即可.【详解】根据长方体性质知:面,故为与面所成的角,,所以.故选:A7.如图,点是正方形两条对角线的交点.从这个正方形的四个顶点中随机选取两个,那么这两个点关于点对称的概率为()A.B.C.D.【答案】C【解析】【分析】先求出事件的基本总数,再求出满足条件的基本事件数,利用古典概型计算即可.【详解】从四个顶点选两个的情况数为:,选的两个点关于中心对称的情况有:与两种,所以所求概率为:,故选:C.8.圆心为,半径的圆的标准方程为()A.B.C.D.【答案】B【解析】【分析】根据圆的标准方程的形式,由题中条件,可直接得出结果.【详解】根据题意,圆心为,半径圆的标准方程为;故选:B.9.已知正四棱锥的高为4,棱的长为2,点为侧棱上一动点,那么面积的最小值为()A.B.C.D.【答案】D【解析】【分析】根据正四棱锥的性质得到平面,,然后根据,,得到的范围,最后根据三角形面积公式求面积的最小值即可.【详解】取中点,连接、、,因四棱锥为正四棱锥,所以平面,,因为为中点,所以,因为平面,所以,因为,,所以,,在直角三角形中,当时,最小,为,当点和点重合时,最大,最大为4,所以,,所以当时,的面积最小,为.故选:D.10.抛掷一枚质地均匀的骰子两次,将第一次得到的点数记为,第二次得到的点数记为,那么事件“”的概率为()A.B.C.D.【答案】C【解析】【分析】由已知先列举出事件总数,然后解出不等式,找出满足条件的事件数,结合古典概率计算即可.【详解】由题意第一次得到的点数记为,第二次得到的点数记为,记为,则它的所有可能情况为:共36种,由,即,由在单调递增,所以,所以满足条件的有:共6种,所以事件“”概率为:,故选:C.11.地震预警是指在破坏性地震发生以后,在某些区域可以利用“电磁波”抢在“地震波”之前发出避险警报信息,以减小相关预警区域的灾害损失.根据Rydelek和Pujol提出的双台子台阵方法,在一次地震发生后,通过两个地震台站的位置和其接收到的信息,可以把震中的位置限制在双曲线的一支上,这两个地震台站的位置就是该双曲线的两个焦点.在一次地震预警中,两地震台站和站相距.根据它们收到的信息,可知震中到站与震中到站的距离之差为.据此可以判断,震中到地震台站的距离至少为()A.B.C.D.【答案】A【解析】【分析】设震中为,根据双曲线的定义以及可求出结果.【详解】设震中为,依题意有,所以点的轨迹是以为焦点的双曲线靠近的一支,因为,当且仅当三点共线时,取等号,所以,所以,所以震中到地震台站的距离至少为.故选:A12.对于数列,若存在正数,使得对一切正整数,都有,则称数列是有界的.若这样的正数不存在,则称数列是无界的.记数列的前项和为,下列结论正确的是()A.若,则数列是无界的B