预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

苏教版初一下学期期末强化数学试卷(-)学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列计算正确的是()A.﹣m•(﹣m)2=﹣m3B.x8÷x2=x4C.(3x)2=6x2D.(﹣a2)3=a62.如图,∠B的同位角是()A.∠1B.∠2C.∠3D.∠43.已知方程组的解满足,则整数k的最小值为()A.-3B.-2C.-1D.04.已知a>b>c,则下列结论不一定成立的是()A.a+c>b+cB.ac>bcC.4a-c>4b-cD.c-2a<c-2b5.若关于的一元一次不等式组的解集是,则的取值范围是()A.B.C.D.6.下列说法中正确的个数有()①在同一平面内,不相交的两条直线必平行;②同旁内角互补;③;④;⑤有两边及其一角对应相等的两个直角三角形全等;⑥经过直线外一点,有且只有一条直线与已知直线垂直.A.0个B.1个C.2个D.3个7.根据下表中提供的四个数的变化规律,则的值为()1426384102029320435554…mx第1个第2个第3个第4个第个A.252B.209C.170D.1358.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2017次相遇在边()A.AB上B.BC上C.CD上D.DA上二、填空题9.计算:2x2y•(﹣xy)2=_____.10.命题“同位角相等”是_______(填“真”或“假”,)命题11.一个多边形的内角和是它的外角和的3倍,则这个多边形是_____边形.12.已知,,则多项式的值是________.13.已知关于的方程组,为常数,给出下列结论:①是方程组的解;②当时,方程组的解也是方程的解;③无论取何值,和的值都不可能互为相反数.其中正确的是_______.(填序号)14.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥(图中虚线),若荷塘周长为900m,且桥宽忽略不计,则小桥的总长为_______m.15.已知一个正多边形的内角是,则这个正多边形是________边形.16.如图,在中,,,点为边上一点且不与、重合,将沿翻折得到,直线与直线相交于点.若,当为等腰三角形时,__________.(用含的代数式表示)三、解答题17.计算:(1)2-2+(3721﹣4568)0(2)(-x2)3+(-3x2)2•x218.因式分解:(1)(2)19.解方程组(1)(2)20.解不等式组,并把解集在数轴上表示出来.21.阅读理解,补全推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4求证:∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF()∴∠1=∠DGF(等量代换)∴BD∥CE()∴∠3+∠C=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴DF∥AC()∴∠A=∠F(两直线平行,内错角相等)22.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3个4个1200元第二周5个3个1450元进价、售价均保持不变,利润销售收入进货成本(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.23.某市七年级“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划到某商场采购一批足球和排球,该商场的每个足球与每个排球的标价之和为90元;若按标价购买4个足球、5个排球,则共需400元.(1)该商场足球和排球的标价分别是多少元?(2)若该商场有两种优惠方式:方式一:足球和排球一律按标价8折优惠;方式二:每购买2个足球,赠送1个排球(单买排球按标价计算).①若学校需采购足球、排球各50个,你认为应该采用哪种优惠方式购买合算?②若学校计划在此商场采购足球、排球共100个,其中足球数量为偶数且不超过48个,并且用方式二购买的费用不超过用方式一购买的费用,请问学校有几种采购方案,并说明理由.24.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②