预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共52页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高等数学——微分方程高阶常系数非齐次线性方程的特解2010年8月~10月解读《2010版考研数学复习指南(理工类,文登考研培训特供版)》P160,表6-6------------------------------------------------------------------------------------------------------------------------1.原方程为ynPyn1Pyn2PyPyekx............................................................112n1n1.1.k是FD0的m重根,nm0...............................................................................11.2.原方程为ypyqyekx...............................................................................................62.微分算子对三角函数的若干性质..............................................................................................72.1.正弦函数............................................................................................................................72.2.余弦函数............................................................................................................................72.3.正弦函数+余弦函数..........................................................................................................8nn1n23.原方程为yPyPyPyPysinx......................................................812n1n3.1.i是FD0的m重根,km0...........................................................................83.2.i不是FD0的根..................................................................................................20nn14.原方程为yPyPyPyekxhx..................................................................271n1n4.1.微分算子法的结论..........................................................................................................284.2.位移定理FDekxuxekxFDkux...................................................................28nn15.原方程为yPyPyPyvx,其中vx为关于x的m阶多项式..........291n1n5.1.对于幂函数的微积分用排列数统一表示......................................................................295.2.待定系数法,0不是特征根,即P0........................................................................29n5.3.微分算子法,0不是特征根,即P0...........................................................