预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

古代数学著作篇一:我国古代数学著作new我国古代数学著作孙子算经中有一道名题:今有鸡兔同笼,共有35个头,94只脚,问鸡和兔各有多少只?方法一:假设法。假设35只全是鸡。则:2*35=7094-70=24兔:24/(4-2)=12(只)鸡:35-12=23(只)方法二:方程法。假设有X只鸡则:2X+(35-X)*4=94解得:X=23(只)35-23=12(只)答:鸡和兔各有23只和12只。心得:从鸡兔同笼这道题看出:方程的优点是列式简单,是一种把难化简的方法,缺点是有时解题过程比较复杂。另一道题:假设这件衣服值X个银币则:(X+10)/12*7=X+2解得:X=9.2篇二:中国古代数学1引言中国是四大文明古国之一,也是数学的发源地之一,由于地域、文化等特点,中国古代数学与欧洲数学存在着巨大的差别.这不仅表现在对理论与计算的偏重上,还表现在数学与社会关系的处理上.欧洲数学注重理论的逻辑推演和系统的建立.而与之相对,中国数学注重算法的分析和知识的现实可用性.这些特点使得中国数学在很长一段时间里成就位居世界之首.尤其是在古希腊数学衰落之后,中国数学取得了许多举世瞩目的成就.当西欧进入黑暗时代时,中国数学却在腾飞,许多成就比后来欧洲在文艺复兴和文艺复兴之后取得的同样成就早得多.这些成就的取得固然令我们感到骄傲,但到了十四世纪以后中国数学却开始走向了衰落.几百年来,中国人在数学这片领域上几乎找不到任何重大的发现与创新.这其中的原因不能不令我们深思.对历史进行分析能让我们看到中国古代数学由兴到衰的过程.对产生这种结果的诸多因数进行分析就能让我们深刻认识到衰落的真正原因,从而弃其糟粕,取其精华.中国古代数学究竟取得了那些重要成就?中国古代数学又是怎样走向衰落的?为弄清这些问题,首先让我们来回顾一下中国的数学发展史.2中国古代数学发展简史数学在中国的历史悠久绵长.在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;易经中还包含有组合数学与二进制思想.2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似.算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算.中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的.但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间.算数书成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的.周髀算经编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就――(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日.”――这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”.九章算术在中国古代数学发展过程中占有非常重要的地位.它经过许多人整理而成,大约成书于东汉时期.全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等.在代数方面,九章算术在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和九章算术介绍的方法大体相同.注重实际应用是九章算术的一个显著特点.该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲.九章算术标志以筹算为基础的中国古代数学体系的正式形成.中国古代数学在三国及两晋时期侧重于理论分析,其中以赵爽与刘徽为主要代表人物.赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对周髀算经的阐释.在勾股圆方图注中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法.用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献.三国时期魏人刘徽则注释了九章算术,其著作九章算术注不仅对九章算术的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造.其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值――“3927/1250(3.1416)”.他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础.在分析多面体体积过程中,刘徽运用极限方法证明了“阳马术”.另外,海岛算经也是刘徽编撰的一部数学论著.南北朝是中国古代数学的蓬勃发展时期,计有孙子算经、夏侯阳算经、张丘建算经等算学著作问世.祖冲之、祖父子的工作在这一时期最具代表性.他们着重进行数学思维和数学