预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中考数学复习锐角三角函数专项易错题附答案解析一、锐角三角函数1.某地是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40o,从前脚落地点D看上嘴尖A的仰角刚好60o,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的.长你也算算?(结果精确到0.1m.参考数据:sin400.64,cos400.77,tan400.84.21.41,31.73)【答案】AB的长约为0.6m.【解析】【分析】作BFCE于F,根据正弦的定义求出BF,利用余弦的定义求出CF,利用正切的定义求出DE,结合图形计算即可.【详解】解:作BFCE于F,在RtBFC中,BF=BCsinBCF3.20,CF=BCcosBCF3.85,AB3在RtADEE中,DE31.73,tanADE3BH=BF﹣HF=0.20,AH=EF=CDDE﹣CF=0.58由勾股定理得,ABBH2AH20.6(m),答:AB的长约为0.6m.【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BADBF平分∠ABC∴∠BAE=∠EAF∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB∠AFB=∠EBF∴∠BAE=∠AEB∠AFB=∠ABF∴AB=BEAB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tanD的值.【答案】(1)证明见解析;(2)PA=3,tanD=.【解析】试题分析:(1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OCPC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB是半圆O的直径,弦CD//AB,动点P、Q分别在线段OC、CD上,且DQOP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与4点C、D不重合),AB20,cosAOC.设OPx,CPF的面积为y.5(1)求证:APOQ;(2)求y关于x的函数关系式,并写出它的定义域;(3)当OPE是直角三角形时,求线段OP的长.3x26