预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中考数学复习二次函数专项易错题附答案解析 一、二次函数 1.如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,. (1)若直线经过、两点,求直线和抛物线的解析式; (2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标; (3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标. 【答案】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或. 【解析】 分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式; (2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标; (3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标. 详解:(1)依题意得:,解得:, ∴抛物线的解析式为. ∵对称轴为,且抛物线经过, ∴把、分别代入直线, 得,解之得:, ∴直线的解析式为. (2)直线与对称轴的交点为,则此时的值最小,把代入直线得, ∴.即当点到点的距离与到点的距离之和最小时的坐标为. (注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因). (3)设,又,, ∴,,, ①若点为直角顶点,则,即:解得:, ②若点为直角顶点,则,即:解得:, ③若点为直角顶点,则,即:解得: ,. 综上所述的坐标为或或或. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题. 2.(2017南宁,第26题,10分)如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N. (1)直接写出a的值、点A的坐标及抛物线的对称轴; (2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标; (3)证明:当直线l绕点D旋转时,均为定值,并求出该定值. 【答案】(1)a=,A(﹣,0),抛物线的对称轴为x=;(2)点P的坐标为(,0)或(,﹣4);(3). 【解析】 试题分析:(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴; (2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可; (3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可. 试题解析:(1)∵C(0,3),∴﹣9a=3,解得:a=. 令y=0得:,∵a≠0,∴,解得:x=﹣或x=,∴点A的坐标为(﹣,0),B(,0),∴抛物线的对称轴为x=. (2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°. ∵AE为∠BAC的平分线,∴∠DAO=30°,∴DO=AO=1,∴点D的坐标为(0,1). 设点P的坐标为(,a). 依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2. 当AD=PA时,4=12+a2,方程无解. 当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0). 当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4,∴点P的坐标为(,﹣4). 综上所述,点P的坐标为(,0)或(,﹣4). (3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:,解得:m=,∴直线AC的解析式为. 设直线MN的解析式为y=kx+1. 把y=0代入y=kx+1得:kx+1=0,解得:x=,∴点N的坐标为(,0),∴AN==. 将与y=kx+1联立解得:x=,∴点M的横坐标为. 过点M作MG⊥x轴,垂足为G.则AG=. ∵∠MAG=60°,∠AGM=90°,∴AM=2AG==,∴