预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共34页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

利用空间向量解决立体几何问题复习:4.向量的模长:5.共面向量定理:如果两个向量不共线,则向量与向量共面的充要条件是存在实数对使空间四点P、M、A、B共面一.引入两个重要的空间向量2.平面的法向量o练习:在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的中心,求面OA1D1的法向量.解:以A为原点建立空间直角坐标系O-xyz,设平面OA1D1的法向量的法向量为n=(x,y,z),那么O(1,1,0),A1(0,0,2),D1(0,2,2)练习如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=1,E是PC的中点,求平面EDB的一个法向量.二、立体几何中的向量方法——平行关系mα二、垂直关系:例1四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,PD=DC=6,E是PB的中点,DF:FB=CG:GP=1:2.求证:AE//FG.例2四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点,求证:PA//平面EDB.A练如图,已知矩形练如图,已知矩形练如图,已知矩形练习棱长为a的正方体中,E、F分别是棱AB,OA上的动点,且AF=BE,求证:AA,E是AA1中点,证明2:A例4棱长都等于2的正三棱柱ABC-A1B1C1,D,E分别是AC,CC1的中点,求证:(1)A1E⊥平面DBC1;(2)AB1∥平面DBC1解:以D为原点,DA为x轴,DB为y轴建立空间直角坐标系D-xyz.则A(-1,0,0),B(0,,0),E(1,0,1),A1(-1,0,2),B1(0,,2),C1(1,0,2).设平面DBC1的法向量为n=(x,y,z),则解之得,取z=1得n=(-2,0,1)(1)=-n,从而A1E⊥平面DBC1(2),而n=-2+0+2=0∴AB1∥平面DBC1