预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第六章图形的性质(二)(2)切线的性质:①切线的性质定理:圆的切线经过切点的半径.②推论1:经过切点且垂直于切线的直线必经过.③推论2:经过圆心且垂直于切线的直线必经过.(3)切线的判定定理:经过半径的外端并且这条半径的直线是圆的切线.(4)三角形的内切圆:和三角形三边都的圆叫做三角形的内切圆,内切圆的圆心是.内切圆的圆心叫做三角形的,内切圆的半径是内心到三边的距离,且在三角形内部.1.证直线为圆的切线的两种方法(1)若知道直线和圆有公共点时,常连接公共点和圆心,证明直线垂直半径;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.2.圆中的分类讨论圆是一种极为重要的几何图形,由于图形位置、形状及大小的不确定,经常出现多结论情况.(1)由于点在圆周上的位置的不确定而分类讨论;(2)由于弦所对弧的优劣情况的不确定而分类讨论;(3)由于弦的位置不确定而分类讨论;(4)由于直线与圆的位置关系的不确定而分类讨论.3.常见的辅助线(1)当已知条件中有切线时,常作过切点的半径,利用切线的性质定理来解题;(2)遇到两条相交的切线时(切线长),常常连接切点和圆心、连接圆心和圆外的一点、连接两切点.1.(2015·张家界)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能2.(2016·酒泉)如图,AB和⊙O相切于点B,∠AOB=60°,则∠A的大小为()A.15°B.30°C.45°D.60°3.(2016·湖州)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25°B.40°C.50°D.65°4.(2016·德州)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步5.(2016·湖北)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI,BD,DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合[对应训练]1.(1)(2015·齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5(2)(2016·永州)如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:①当d=3时,m=____;②当m=2时,d的取值范围是.[对应训练]2.(导学号:01262215)(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.【例3】(2016·永州)如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.(1)直线PC与⊙O交于点C,可以初步判定直线与圆相切或相交;(2)PA切⊙O于点A,根据切线的性质,可知∠PAO=90°,连接CO,能证得∠PCO=∠PAO=90°,PC与⊙O相切;而后由PC是切线解得PC长.规范解题解:(1)直线PC与⊙O相切.证明:连接OC,∵BC∥OP,∴∠1=∠2,∠3=∠4.∵OB=OC,∴∠1=∠3,∴∠2=∠4.又∵OC=OA,OP=OP,∴△POC≌△POA(SAS),∴∠PCO=∠PAO.∵PA切⊙O于点A,∴∠PAO=90°,∴∠PCO=90°,∴PC与⊙O相切.答题思路第一步:探索可能的结论,假设符合要求的结论存在;第二步:从条件出发(即假设)求解;第三步:确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点,易错点及答题规范.