预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

图形的相似3.平行线分线段成比例定理(1)三条平行线截两条直线,所得的对应线段成比例;(2)平行于三角形一边截其他两边(或两边的延长线),所得的对应线段成__比例__;(3)如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成__比例__,那么这条直线平行于三角形的第三边;(4)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例.4.相似三角形的定义:对应角相等、对应边成比例的三角形叫做__相似三角形__.相似比:相似三角形的对应边的比,叫做两个相似三角形的__相似比__.5.相似三角形的判定(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;(5)两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;(6)直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.6.相似三角形性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.7.射影定理:如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,则有下列结论.8.相似多边形的性质(1)相似多边形对应角__相等__,对应边__成比例__.(2)相似多边形周长之比等于__相似比__,面积之比等于__相似比的平方__.9.位似图形(1)概念:如果两个多边形不仅__相似__,而且对应顶点的连线相交于__一点__,这样的图形叫做位似图形.这个点叫做__位似中心__.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于__位似比__.3.(2014·河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新的三角形,它们的对应边间距均为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是(A)5.(2013·河北)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN=(B)A.3B.4C.5D.68.(2011·河北)如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)比例的基本性质、黄金分割三角形相似的性质及判定【点评】本题考查了相似三角形的性质和判定、平行四边形的性质、勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.2.(2014·玉林)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕点M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.解析:①∵点A的坐标为(-2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB相似三角形综合问题(1)证明:连OC,如图,∵ED⊥AB,∴∠FBG+∠FGB=90°,又∵PC=PG,∴∠1=∠2,而∠2=∠FGB,∠4=∠FBG,∴∠1+∠4=90°,即OC⊥PC,∴PC是⊙O的切线【点评】本题考查了切线的判定、垂径定理、勾股定理以及三角形相似的判定与性质等知识的综合运用.3.(2014·绍兴)课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少毫米?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图①,此时,这个矩形零件的两条边长又分别为多少毫米?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图②,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.相似多边形与位似图形(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD