预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN108875486A(43)申请公布日2018.11.23(21)申请号201710898022.8(22)申请日2017.09.28(71)申请人北京旷视科技有限公司地址100190北京市海淀区科学院南路2号A座313申请人北京迈格威科技有限公司(72)发明人林浩彬(74)专利代理机构北京市磐华律师事务所11336代理人高伟卜璐璐(51)Int.Cl.G06K9/00(2006.01)G06K9/62(2006.01)G06N3/04(2006.01)G06N3/08(2006.01)权利要求书3页说明书12页附图4页(54)发明名称目标对象识别方法、装置、系统和计算机可读介质(57)摘要本发明提供了一种目标对象识别方法、装置、系统和计算机可读介质,所述目标对象识别方法包括:获取待识别图像;利用训练好的去模糊神经网络对所述待识别图像进行去模糊操作以生成去模糊图像;以及基于所述去模糊图像进行目标对象的特征提取和识别。根据本发明实施例的目标对象识别方法、装置、系统和计算机可读介质基于训练好的去模糊神经网络对待识别图像进行去模糊处理,使得特征提取在更加清晰的目标对象上进行,从而能够解决模糊图像对识别的干扰问题,提高目标对象识别的准确率和效率。CN108875486ACN108875486A权利要求书1/3页1.一种目标对象识别方法,其特征在于,所述目标对象识别方法包括:获取待识别图像;利用训练好的去模糊神经网络对所述待识别图像进行去模糊操作以生成去模糊图像;以及基于所述去模糊图像进行目标对象的特征提取和识别。2.根据权利要求1所述的目标对象识别方法,其特征在于,所述利用训练好的去模糊神经网络对所述待识别图像进行去模糊操作以生成去模糊图像包括:利用所述去模糊神经网络得到所述待识别图像的重建残差,并将所述重建残差与所述待识别图像相加以得到所述去模糊图像。3.根据权利要求2所述的目标对象识别方法,其特征在于,所述去模糊神经网络包括依次连接的输入层、第一卷积层、至少一层卷积池化层、至少一层反池化卷积层以及第四卷积层,其中:所述第一卷积层输出与原始输入图像尺寸相同的第一特征层;所述卷积池化层包括依次连接的第二卷积层和池化层,所述卷积池化层输出与所述原始输入图像相比尺寸按比例缩小的第二特征层;所述反池化卷积层包括依次连接的反池化层和第三卷积层,所述反池化卷积层输出按比例增大的第三特征层,所述至少一层反池化卷积层中的最后一层反池化卷积层输出的第三特征层的尺寸与所述原始输入图像的尺寸相同;以及所述第四卷积层输出重建残差,所述重建残差与原始输入图像相加的结果为重建的去模糊图像。4.根据权利要求3所述的目标对象识别方法,其特征在于,所述卷积池化层与所述反池化卷积层的数目相等。5.根据权利要求3所述的目标对象识别方法,其特征在于,所述去模糊神经网络还包括跳跃连接,所述跳跃连接用于将相同尺寸的特征层拼接在一起。6.根据权利要求5所述的目标对象识别方法,其特征在于,所述去模糊神经网络还包括第五卷积层,所述第五卷积层所述反池化卷积层连接,用于减少因所述特征层的拼接而导致增加的通道数。7.根据权利要求1-6中的任一项所述的目标对象识别方法,其特征在于,所述去模糊神经网络的训练所基于的样本是模糊图像集,所述模糊图像集中的模糊图像是通过对包括目标对象的清晰图像实施图像模糊算法而得到的。8.根据权利要求1-6中的任一项所述的目标对象识别方法,其特征在于,所述基于所述去模糊图像进行目标对象的特征提取和识别,包括:基于所述去模糊图像和特征提取网络进行所述目标对象的特征提取和识别。9.根据权利要求8所述的目标对象识别方法,其特征在于,所述训练好的去模糊神经网络与所述特征提取网络连在一起,所述去模糊神经网络与所述特征提取网络被进行共同调优训练,以用于所述目标对象的识别。10.根据权利要求1-6中的任一项所述的目标对象识别方法,其特征在于,所述目标对象为人脸。11.一种目标对象识别装置,其特征在于,所述目标对象识别装置包括:2CN108875486A权利要求书2/3页获取模块,用于获取待识别图像;去模糊模块,用于利用训练好的去模糊神经网络对所述获取模块获取到的所述待识别图像进行去模糊操作以生成去模糊图像;以及识别模块,用于基于所述去模糊模块生成的所述去模糊图像进行目标对象的特征提取和识别。12.根据权利要求11所述的目标对象识别装置,其特征在于,所述去模糊模块进一步用于:利用所述去模糊神经网络得到所述获取模块获取到的所述待识别图像的重建残差,并将所述重建残差与所述待识别图像相加以得到所述去模糊图像。13.根据权利要求12所述的目标对象识别装置,其特征在于,所述去模糊神经网络包括依次连接的输入层、第一