预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

活页作业数列的综合应用一、选择题1.(·佛山模拟)在各项均为正数的等比数列{an}中a3a5=4那么数列{log2an}的前7项和等于()A.7B.8C.27D.28解析:在各项均为正数的等比数列{an}中由a3a5=4得aeq\o\al(24)=4a4=2.设bn=log2an那么数列{bn}是等差数列且b4=log2a4=1.所以{bn}的前7项和S7=eq\f(7b1+b72)=7b4=7.答案:A2.(理)(·西安质检)植树节某班20名同学在一段直线公路一侧植树每人植一棵相邻两棵树相距10米开始时需将树苗集中放置在某一树坑旁边现将树坑从1到20依次编号为使各位同学从各自树坑前来领取树苗所走的路程总和最小树苗可以放置的两个最正确坑位的编号为()A.①和⑳B.⑨和eq\o(○\s\up1(10))C.⑨和⑪D.⑩和⑪2.(文)等差数列{an}的前n项和为Sn假设eq\o(OB\s\up7(→))=a100eq\o(OA\s\up7(→))+a101eq\o(OC\s\up7(→))且A、B、C三点共线(该直线不过点O)那么S200等于()A.100B.101C.200D.201解析:∵eq\o(OB\s\up7(→))=a100eq\o(OA\s\up7(→))+a101eq\o(OC\s\up7(→))且ABC三点共线(该直线不过点O)∴a100+a101=1∴S200=eq\f(200×a1+a2002)=100×(a1+a200)=100×1=100.答案:A3.在数列{an}中对任意n∈N*都有eq\f(an+2-an+1an+1-an)=k(k为常数)那么称{an}为“等差比数列〞.下面对“等差比数列〞的判断:①k不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④通项公式为an=a·bn+c(a≠0b≠01)的数列一定是等差比数列.其中正确的判断为()A.①②B.②③C.③④D.①④解析:假设k=0时那么an+2-an+1=0因为an+2-an+1可能为分母故无意义故k不可能为0①正确;假设等差、等比数列为常数列那么②③错误.由定义知④正确.答案:D4.(金榜预测)在如下图的表格中如果每格填上一个数后每一行成等差数列每一列成等比数列那么x+y+z的值为()A.1B.2C.3D.4解析:由题知表格中第三列成首项为4公比为eq\f(12)的等比数列故有x=每行成等差数列得第四列前两个数字依次为5eq\f(52)故其公比为eq\f(12)所以y=5×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(12)))3=eq\f(58)同理z=6×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(12)))4=eq\f(38)故x+y+z=2.答案:B5.(理)(·邢台模拟)设等差数列{an}的前n项和为Sn.假设a1=-11a4+a6=-6那么当Sn取最小值时n等于()A.6B.7C.8D.9解析:设等差数列的公差为d那么由a4+a6=-6得2a5=-6∴a5=3又a1=-11∴3=-11+4d∴d=2∴Sn=-11n+eq\f(nn-12)×2=n2-12n=(n-6)2-36∴当n=6时Sn有最小值.答案:A5.(文)(·辽阳模拟)数列{an}为等差数列假设eq\f(a11a10)<-1且它们的前n项和Sn有最大值那么使Sn>0的n的最大值为()A.11B.19C.20D.21解析:∵eq\f(a11a10)<-1且Sn有最大值∴a10>0a11<0且a10+a11<0∴S19=eq\f(19a1+a192)=19·a10>0S20=eq\f(20a1+a202)=10(a10+a11)<0所以使得Sn>0的n的最大值为19应选B.答案:B6.(理)设Meq\b\lc\(\rc\)(\a\vs4\al\co1(cos\f(π3)x+cos\f(π4)xsin\f(π3)x+sin\f(π4)x))(x∈R)为坐标平面上一点记f(x)=|eq\o(OM\s\up7(→))|2-2且f(x)的图象与射线y=0(x≥0)交点的横坐标由小到大依次组成数列{an}那么|an+3-an|=()A.24πB.36πC.24D.36解析:f(x)=|eq\o(OM\s\up7(→))|2-2=[(coseq\f(π3)x+c