预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°2、如图是的弦点在过点的切线上交于点.若则的度数等于()A.B.C.D.3、如图⊙O的半径为5弦AB=8P是弦AB上的一个动点(不与AB重合)下列符合条件的OP的值是()A.6.5B.5.5C.3.5D.2.54、如图⊙O的半径为5cm直线l到点O的距离OM=3cm点A在l上AM=3.8cm则点A与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能5、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD6、如图正五边形内接于⊙为上的一点(点不与点重合)则的度数为()A.B.C.D.7、如图、分别切于点、点为优弧上一点若则的度数为()A.B.C.D.8、如图⊙O的半径为5AB为弦点C为的中点若∠ABC=30°则弦AB的长为()A.B.5C.D.59、已知扇形的圆心角为半径为则弧长为()A.B.C.D.10、下列说法正确的是()①近似数精确到十分位;②在中最小的是;③如图所示在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时首先应假设“这个三角形中有两个钝角”;⑤如图在内一点到这三条边的距离相等则点是三个角平分线的交点.A.1B.2C.3D.4第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、若⊙O的半径为6cm则⊙O中最长的弦为________厘米.2、如图在⊙O中是⊙O的直径点是点关于的对称点是上的一动点下列结论:①;②;③;④的最小值是10.上述结论中正确的个数是_________.3、如图正五边形ABCDE内接于⊙O点F在上则∠CFD=_____度.4、如图在甲以点为圆心的长为半径作圆交于点交于点阴影部分的面积为__________(结果保留).5、如图已知是的直径且弦点是弧上的点连接、若则的长为______.三、解答题(5小题每小题10分共计50分)1、如图在Rt△ABC中∠C=90°BD平分∠ABC点O在AB上以点O为圆心OB为半径的圆经过点D交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2CD=求图中阴影部分的面积(结果保留).2、如图∠BAC的平分线交△ABC的外接圆于点D∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°BD=4求△ABC外接圆的半径.3、如图所示.(1)已知求以为直径的半圆面积及扇形的面积;(2)若的长度未知已知阴影甲的面积为16平方厘米能否求阴影乙的面积?若能请直接写出结果;若不能请说明理由.4、如图AB是⊙O的直径弦CD⊥AB于点E点P⊙O上∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°求∠P的度数.5、在下列正多边形中是中心定义:为相应正多边形的基本三角形.如图1是正三角形的基本三角形;如图2是正方形的基本三角形;如图3为正边形…的基本三角形.将基本绕点逆时针旋转角度得.(1)若线段与线段相交点则:图1中的取值范围是________;图3中的取值范围是________;(2)在图1中求证(3)在图2中正方形边长为4边上的一点旋转后的对应点为若有最小值时求出该最小值及此时的长度;(4)如图3当时直接写出的值.-参考答案-一、单选题1、D【解析】【分析】首先连接OAOB由PAPB为⊙O的切线根据切线的性质即可得∠OAP=∠OBP=90°又由圆周角定理可求得∠AOB的度数继而可求得答案.【详解】解:连接OAOB∵PAPB为⊙O的切线∴∠OAP=∠OBP=90°∵∠ACB=70°∴∠AOB=2∠P=140°∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D.【考点】此题考查了切线的性质与圆周角定理注意掌握辅助线的作法和数形结合思想的应用.2、B【解析】【分析】根据题意可求出∠APO、∠A的度数进一步可得∠ABO度数从而推出答案.【详解】∵∴∠APO=70°∵∴∠AOP=90°∴∠A=20°又∵O