预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共34页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

试卷试卷人教版九年级数学上册第二十四章圆同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图⊙O中弦AB⊥CD垂足为EF为的中点连接AF、BF、ACAF交CD于M过F作FH⊥AC垂足为G以下结论:①;②HC=BF:③MF=FC:④其中成立的个数是()A.1个B.2个C.3个D.4个2、如图、为的切线、为切点点为弧上一点过点作的切线分别交、于、若则的周长等于().A.B.C.D.3、下列4个说法中:①直径是弦;②弦是直径;③任何一条直径所在的直线都是圆的对称轴;④弧是半圆;正确的有()A.1个B.2个C.3个D.4个4、如图AB是半圆的直径点D是弧AC的中点∠ABC=50°则∠BCD=()A.105°B.110°C.115°D.120°5、如图⊙O的半径为5弦AB=8P是弦AB上的一个动点(不与AB重合)下列符合条件的OP的值是()A.6.5B.5.5C.3.5D.2.56、如图矩形中分别是边上的动点以为直径的与交于点.则的最大值为().A.48B.45C.42D.407、如图在中AB=AC=5点在上且点E是AB上的动点连结点G分别是BCDE的中点连接当AG=FG时线段长为()A.B.C.D.48、如图点BCD在⊙O上若∠BCD=130°则∠BOD的度数是()A.50°B.60°C.80°D.100°9、已知⊙O的半径为4点O到直线m的距离为d若直线m与⊙O公共点的个数为2个则d可取()A.5B.4.5C.4D.010、如图⊙O的直径垂直于弦垂足为.若则的长是()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、一个扇形的弧长是面积是则这个扇形的圆心角是___度.2、如图四边形是的外切四边形且则四边形的周长为__________.3、如图已知正六边形ABCDEF的边长为2对角线CF和BE相交于点N对角线DF与BE相交于点M则MN=_____.4、如图直线、相交于点半径为1cm的⊙的圆心在直线上且与点的距离为8cm如果⊙以2cm/s的速度由向的方向运动那么_________秒后⊙与直线相切.5、如图AB为△ADC的外接圆⊙O的直径若∠BAD=50°则∠ACD=_____°.三、解答题(5小题每小题10分共计50分)1、如图在Rt△ABC中∠C=90°BD平分∠ABC点O在AB上以点O为圆心OB为半径的圆经过点D交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2CD=求图中阴影部分的面积(结果保留).2、已知正方形ABCD中M、N分别为AD边上的两点连接BM、CN并延长交于一点H连接AHE为BM上一点连接AE、CE∠ECH+∠MNH=90°.(1)如图1若E为BM的中点且DM=3AM求线段AB的长.(2)如图2若点F为BE中点点G为CF延长线上一点且EG//BCCE=GE求证:.(3)如图3在(1)的条件下点P为线段AD上一动点连接BP作CQ⊥BP于Q将△BCQ沿BC翻折得到△BCl点K、R分别为线段BC、Bl上两点且BI=3RIBC=4BK连接CR、IK交于点T连接BT直接写出△BCT面积的最大值.3、如图正五边形内接于为上的一点(点不与点重合)求的余角的度数.4、问题探究(1)在中分别是与的平分线.①若如图试证明;②将①中的条件“”去掉其他条件不变如图问①中的结论是否成立?并说明理由.迁移运用(2)若四边形是圆的内接四边形且如图试探究线段之间的等量关系并证明.5、已知抛物线经过点(m﹣4)交x轴于AB两点(A在B左边)交y轴于C点对于任意实数n不等式恒成立.(1)抛物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D使得∠BDC=2∠BAC若有求出点D的坐标若没有请说明理由;(3)将抛物线沿x轴正方向平移一个单位把得到的图象在x轴下方的部分沿x轴向上翻折图的其余部分保持不变得到一个新的图象G若直线y=x+b与新图象G有四个交点求b的取值范围(直接写出结果即可).-参考答案-一、单选题1、C【解析】【分析】根据弧弦圆心角之间的关系圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为的中点∴故①正确∴∠FCM=∠FAC∵∠FCG=∠ACM+∠FCM∠AME=∠FMC=∠