预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共33页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

试卷试卷人教版九年级数学上册第二十四章圆同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图在△ABC中∠ACB=90°AC=BCAB=4cmCD是中线点E、F同时从点D出发以相同的速度分别沿DC、DB方向移动当点E到达点C时运动停止直线AE分别与CF、BC相交于G、H则在点E、F移动过程中点G移动路线的长度为()A.2B.πC.2πD.π2、一个商标图案如图中阴影部分在长方形中以点为圆心为半径作圆与的延长线相交于点则商标图案的面积是()A.B.C.D.3、如图四边形ABCD内接于⊙O点I是△ABC的内心∠AIC=124°点E在AD的延长线上则∠CDE的度数为()A.56°B.62°C.68°D.78°4、如图、为⊙O的切线切点分别为A、B交于点C的延长线交⊙O于点D.下列结论不一定成立的是()A.为等腰三角形B.与相互垂直平分C.点A、B都在以为直径的圆上D.为的边上的中线5、一个点到圆的最大距离为11cm最小距离为5cm则圆的半径为()A.16cm或6cmB.3cm或8cmC.3cmD.8cm6、如图是⊙的直径点C为圆上一点的平分线交于点D则⊙的直径为()A.B.C.1D.27、已知一个三角形的三边长分别为5、7、8则其内切圆的半径为()A.B.C.D.8、如图AB是的直径点B是弧CD的中点AB交弦CD于E且则()A.2B.3C.4D.59、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD10、一个等腰直角三角形的内切圆与外接圆的半径之比为()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在甲以点为圆心的长为半径作圆交于点交于点阴影部分的面积为__________(结果保留).2、如图分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为则勒洛三角形的周长为_____.3、如图圆锥的母线长OA=6底面圆的半径为一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处则小虫所走的最短路程为___________(结果保留根号)4、一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.5、如图在正六边形ABCDEF中分别以CF为圆心以边长为半径作弧图中阴影部分的面积为24π则正六边形的边长为_____.三、解答题(5小题每小题10分共计50分)1、如图在⊙O中∠ACB=60°求证∠AOB=∠BOC=∠COA.2、如图四边形ABCD是平行四边形点ABD均在圆上.请仅用无刻度的直尺分别下列要求画图.(1)在图①中若AB是直径CD与圆相切画出圆心;(2)在图②中若CBCD均与圆相切画出圆心.3、在平面直角坐标系中⊙C与x轴交于点AB且点B的坐标为(80)与y轴相切于点D(04)过点ABD的抛物线的顶点为E.(1)求圆心C的坐标与抛物线的解析式;(2)判断直线AE与⊙C的位置关系并说明理由;(3)若点MN是直线y轴上的两个动点(点M在点N的上方)且MN=1请直接写出的四边形EAMN周长的最小值.4、已知抛物线经过点(m﹣4)交x轴于AB两点(A在B左边)交y轴于C点对于任意实数n不等式恒成立.(1)抛物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D使得∠BDC=2∠BAC若有求出点D的坐标若没有请说明理由;(3)将抛物线沿x轴正方向平移一个单位把得到的图象在x轴下方的部分沿x轴向上翻折图的其余部分保持不变得到一个新的图象G若直线y=x+b与新图象G有四个交点求b的取值范围(直接写出结果即可).5、如图为的直径C为上一点弦的延长线与过点C的切线互相垂直垂足为D连接.(1)求的度数;(2)若求的长.-参考答案-一、单选题1、D【解析】【分析】【详解】解:如图∵CA=CB∠ACB=90°AD=DB∴CD⊥AB∴∠ADE=∠CDF=90°CD=AD=DB在△ADE和△CDF中∴△ADE≌△CDF(SAS)∴∠DAE=∠DCF∵∠AED=∠CEG∴∠ADE=∠CGE=90°∴A、