预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

试卷试卷人教版九年级数学上册第二十四章圆定向训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°2、如图是的内接三角形是直径则的长为()A.4B.C.D.3、如图是的直径若则的度数是()A.32°B.60°C.68°D.64°4、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个5、已知扇形的圆心角为半径为则弧长为()A.B.C.D.6、如图⊙O的半径为5cm直线l到点O的距离OM=3cm点A在l上AM=3.8cm则点A与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能7、如图AB是的直径点B是弧CD的中点AB交弦CD于E且则()A.2B.3C.4D.58、如图、分别切于点、点为优弧上一点若则的度数为()A.B.C.D.9、下列说法正确的是()①近似数精确到十分位;②在中最小的是;③如图所示在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时首先应假设“这个三角形中有两个钝角”;⑤如图在内一点到这三条边的距离相等则点是三个角平分线的交点.A.1B.2C.3D.410、如图点A、B、C在⊙O上且∠ACB=100o则∠α度数为()A.160oB.120oC.100oD.80o第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、刘徽是我国魏晋时期卓越的数学家他在《九章算术》中提出了“割圆术”利用圆的内接正多边形逐步逼近圆来近似计算圆的面积如图若用圆的内接正十二边形的面积来近似估计的面积设的半径为1则__________.2、如图是的内接正三角形点是圆心点分别在边上若则的度数是____度.3、如图PAPB分别切⊙O于AB并与⊙O的切线分别相交于CD已知△PCD的周长等于10cm则PA=__________cm.4、如图PA、PB切⊙O于A、B两点点C在⊙O上且∠P=∠C则∠AOB=_______.5、如图⊙O的直径AB=26弦CD⊥AB垂足为EOE:BE=5:8则CD的长为______.三、解答题(5小题每小题10分共计50分)1、如图在中以为直径的⊙O与相交于点过点作⊙O的切线交于点.(1)求证:;(2)若⊙O的半径为求的长.2、已知抛物线经过点(m﹣4)交x轴于AB两点(A在B左边)交y轴于C点对于任意实数n不等式恒成立.(1)抛物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D使得∠BDC=2∠BAC若有求出点D的坐标若没有请说明理由;(3)将抛物线沿x轴正方向平移一个单位把得到的图象在x轴下方的部分沿x轴向上翻折图的其余部分保持不变得到一个新的图象G若直线y=x+b与新图象G有四个交点求b的取值范围(直接写出结果即可).3、如图PA、PB分别切⊙O于A、B连接PO与⊙O相交于C连接AC、BC求证:AC=BC.4、如图在Rt△ABC中∠C=90°BD平分∠ABC点O在AB上以点O为圆心OB为半径的圆经过点D交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2CD=求图中阴影部分的面积(结果保留).5、如图比较与的长度并证明你的结论.-参考答案-一、单选题1、D【解析】【分析】首先连接OAOB由PAPB为⊙O的切线根据切线的性质即可得∠OAP=∠OBP=90°又由圆周角定理可求得∠AOB的度数继而可求得答案.【详解】解:连接OAOB∵PAPB为⊙O的切线∴∠OAP=∠OBP=90°∵∠ACB=70°∴∠AOB=2∠P=140°∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D.【考点】此题考查了切线的性质与圆周角定理注意掌握辅助线的作法和数形结合思想的应用.2、B【解析】【分析】连接BO根据圆周角定理可得再由圆内接三角形的性质可得OB垂直平分AC再根据正弦的定义求解即可.【详解】如图连接OB∵是的内接三角形∴OB垂直平分AC∴又∵∴∴又∵AD=8∴AO=4∴解得:∴.故答案选B.【考点】本题主要考查