预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、已知扇形的圆心角为半径为则弧长为()A.B.C.D.2、如图AB为的直径CD为上的两点若则的度数为()A.B.C.D.3、如图是的弦点在过点的切线上交于点.若则的度数等于()A.B.C.D.4、已知圆的半径为扇形的圆心角为则扇形的面积为()A.B.C.D.5、如图AB是⊙O的直径点E是AB上一点过点E作CD⊥AB交⊙O于点CD以下结论正确的是()A.若⊙O的半径是2点E是OB的中点则CD=B.若CD=则⊙O的半径是1C.若∠CAB=30°则四边形OCBD是菱形D.若四边形OCBD是平行四边形则∠CAB=60°6、如图所示MN为⊙O的弦∠N=52°则∠MON的度数为()A.38°B.52°C.76°D.104°7、一个点到圆的最大距离为11cm最小距离为5cm则圆的半径为()A.16cm或6cmB.3cm或8cmC.3cmD.8cm8、如图、为⊙O的切线切点分别为A、B交于点C的延长线交⊙O于点D.下列结论不一定成立的是()A.为等腰三角形B.与相互垂直平分C.点A、B都在以为直径的圆上D.为的边上的中线9、如图在四边形ABCD中则AB=()A.4B.5C.D.10、如图AB是半圆的直径点D是弧AC的中点∠ABC=50°则∠BCD=()A.105°B.110°C.115°D.120°第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图AB是⊙O的弦点C在过点B的切线上且OC⊥OAOC交AB于点P已知∠OAB=22°则∠OCB=__________.2、刘徽是我国魏晋时期卓越的数学家他在《九章算术》中提出了“割圆术”利用圆的内接正多边形逐步逼近圆来近似计算圆的面积如图若用圆的内接正十二边形的面积来近似估计的面积设的半径为1则__________.3、圆锥的底面半径为3侧面积为则这个圆锥的母线长为________.4、如图在中半径是半径上一点且.是上的两个动点是的中点则的长的最大值等于__________.5、如图是的外接圆的直径若则______.三、解答题(5小题每小题10分共计50分)1、如图所示四边形ABCD的顶点在同一个圆上另一个圆的圆心在AB边上且该圆与四边形ABCD的其余三条边相切.求证:.2、如图点在上且以为圆心为半径作圆.(1)讨论射线与公共点个数并写出对应的取值范围;(2)若是上一点当时求线段与的公共点个数.3、(1)课本再现:在中是所对的圆心角是所对的圆周角我们在数学课上探索两者之间的关系时要根据圆心O与的位置关系进行分类.图1是其中一种情况请你在图2和图3中画出其它两种情况的图形并从三种位置关系中任选一种情况证明;(2)知识应用:如图4若的半径为2分别与相切于点AB求的长.4、如图分别切、于点、.切于点交于点与不重合).(1)用直尺和圆规作出;(保留作图痕迹不写作法)(2)若半径为1求的长.5、我们知道与三角形各边都相切的圆叫做三角形的内切圆则三角形可以称为圆的外切三角形.如图1与的三边分别相切于点则叫做的外切三角形.以此类推各边都和圆相切的四边形称为圆外切四边形.如图2与四边形ABCD的边ABBCCDDA分别相切于点则四边形叫做的外切四边形.(1)如图2试探究圆外切四边形的两组对边与之间的数量关系猜想:(横线上填“>”“<”或“=”);(2)利用图2证明你的猜想(写出已知求证证明过程);(3)用文字叙述上面证明的结论:;(4)若圆外切四边形的周长为相邻的三条边的比为求此四边形各边的长.-参考答案-一、单选题1、D【解析】【分析】根据扇形的弧长公式计算即可.【详解】∵扇形的圆心角为30°半径为2cm∴弧长cm故答案为:D.【考点】本题主要考查扇形的弧长熟记扇形的弧长公式是解题的关键.2、B【解析】【分析】连接AD如图根据圆周角定理得到然后利用互余计算出从而得到的度数.【详解】解:连接AD如图AB为的直径.故选B.【考点】本题主要考查了同弦所对的圆周角相等直径所对的圆周角是直角解题的关键在于能够熟练掌握相关知识进行求解.3、B【解析】【