预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专项攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、在平面直角坐标系xOy中已知点A(43)以原点O为圆心5为半径作⊙O则()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与⊙O的位置关系无法确定2、如图四边形ABCD内接于⊙O点I是△ABC的内心∠AIC=124°点E在AD的延长线上则∠CDE的度数为()A.56°B.62°C.68°D.78°3、一个点到圆的最大距离为11cm最小距离为5cm则圆的半径为()A.16cm或6cmB.3cm或8cmC.3cmD.8cm4、下列图形为正多边形的是()A.B.C.D.5、如图已知⊙O的半径为4M是⊙O内一点且OM=2则过点M的所有弦中弦长是整数的共有()A.1条B.2条C.3条D.4条6、一个等腰直角三角形的内切圆与外接圆的半径之比为()A.B.C.D.7、如图拱桥可以近似地看作直径为250m的圆弧桥拱和路面之间用数根钢索垂直相连其正下方的路面AB长度为150m那么这些钢索中最长的一根的长度为()A.50mB.40mC.30mD.25m8、如图AB是半圆的直径点D是弧AC的中点∠ABC=50°则∠BCD=()A.105°B.110°C.115°D.120°9、如图点O是△ABC的内心若∠A=70°则∠BOC的度数是()A.120°B.125°C.130°D.135°10、如图公园内有一个半径为18米的圆形草坪从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点为圆心小强从走到走便民路比走观赏路少走()米.A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图四边形ABCD为⊙O的内接正四边形△AEF为⊙O的内接正三角形连接DF.若DF恰好是同圆的一个内接正多边形的一边则这个正多边形的边数为_____.2、如图以为直径作半圆圆心为点;以点为圆心为半径作过点作的平行线交两弧于点、则阴影部分的面积是________.3、如图在的方格纸中每个小方格都是边长为1的正方形其中A、B、C为格点作的外接圆则的长等于_____.4、已知直线m与半径为5cm的⊙O相切于点PAB是⊙O的一条弦且若AB=6cm则直线m与弦AB之间的距离为_____.5、如图AB是⊙O的直径弦CD⊥AB于点E.若AB=10AE=1则弦CD的长是_____.三、解答题(5小题每小题10分共计50分)1、如图△ABC内接于⊙O∠A=30°过圆心O作OD⊥BC垂足为D.若⊙O的半径为6求OD的长.2、如图已知等边△ABC内接于☉OBD为内接正十二边形的一边CD=5cm求☉O的半径R.3、如图AB、CD是⊙O中两条互相垂直的弦垂足为点E且AE=CE点F是BC的中点延长FE交AD于点G已知AE=1BE=3OE=.(1)求证:△AED≌△CEB;(2)求证:FG⊥AD;(3)若一条直线l到圆心O的距离d=试判断直线l是否是圆O的切线并说明理由.4、如图半径为6的⊙O与Rt△ABC的边AB相切于点A交边BC于点CD∠B=90°连接ODAD.(1)若∠ACB=20°求的长(结果保留).(2)求证:AD平分∠BDO.5、如图四边形内接于对角线垂足为于点直线与直线于点.(1)若点在内如图1求证:和关于直线对称;(2)连接若且与相切如图2求的度数.-参考答案-一、单选题1、A【解析】【分析】先求出点A到圆心O的距离再根据点与圆的位置依据判断可得.【详解】解:∵点A(43)到圆心O的距离∴OA=r=5∴点A在⊙O上故选:A.【考点】本题考查了对点与圆的位置关系的判断.关键要记住若半径为点到圆心的距离为则有:当时点在圆外;当时点在圆上当时点在圆内也考查了勾股定理的应用.2、C【解析】【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC)再利用圆内接四边形的外角等于内对角可得答案.【详解】解:∵点I是△ABC的内心∴∠BAC=2∠IAC、∠ACB=2∠ICA∵∠AIC=124°∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°又四边形