预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

16152013年天津市耀华中学高考数学一模试卷(文科)一、选择题:共8题每题5分共40分.在每题给出的四个选项中只有一项是最符合题目要求的将答案涂在答题卡上.1.(5分)(2009•宁夏)复数﹣=()A.0B.2C.﹣2iD.2i考点:复数代数形式的混合运算.分析:直接通分然后化简为a+bi(a、b∈R)的形式即可.解答:解:﹣=﹣=﹣=i+i=2i.故选D.点评:本题考查复数代数形式的混合运算是基础题.2.(5分)下列选项中p是q的必要不充分条件的是()A.p:x=1q:x2=xB.p:m+n是无理数q:m和n是无理数C.p:a+c>b+dq:a>b且c>dD.p:a>1q:f(x)=logax(a>0且a≠1)在(0+∞)上为增函数考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:我们可以根据必要而不充分条件的定义对四个答案逐一进行判断不难得到正确的结论.解答:解:A、由于p:x=1q:x2=x则p:x=1q:x=1或x=0即p⊊q故p为q的充分而不必要条件;B、反例验证:若令m=1n=则m+n=故p≠>q;若令m=﹣n=则m+n=0故q≠>p故p为q的既不充分而不必要条件;C、若a>b且c>d则a+c>b+d而反之不成立故p为q的必要而不充分条件;D、由于若a>1则f(x)=logax(a>0且a≠1)在(0+∞)上必为增函数反之若f(x)=logax(a>0且a≠1)在(0+∞)上为增函数则a>1也成立故p为q的充要条件.故答案为C.点评:本题考查的是必要而不充分条件的判定属于基础题.判断充要条件的方法是:①若p⇒q为假命题且q⇒p为真命题则命题p是命题q的必要不充分条件;②判断命题p与命题q所表示的范围再根据“谁大谁必要谁小谁充分”的原则判断命题p与命题q的关系.3.(5分)(2007•海南)如果执行程序框图那么输出的S=()A.2450B.2500C.2550D.2652考点:设计程序框图解决实际问题.分析:分析程序中各变量、各语句的作用再根据流程图所示的顺序可知:该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值.解答:解:分析程序中各变量、各语句的作用再根据流程图所示的顺序可知:该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2××50=2550故选C点评:根据流程图(或伪代码)写程序的运行结果是算法这一模块最重要的题型其处理方法是::①分析流程图(或伪代码)从流程图(或伪代码)中即要分析出计算的类型又要分析出参与计算的数据(如果参与运算的数据比较多也可使用表格对数据进行分析管理)⇒②建立数学模型根据第一步分析的结果选择恰当的数学模型③解模.4.(5分)已知x=lnπy=log52则()A.x<y<zB.z<x<yC.z<y<xD.y<z<x考点:不等式比较大小.专题:计算题;压轴题.分析:利用x=lnπ>10<y=log52<1>z=>即可得到答案.解答:解:∵x=lnπ>lne=10<log52<log5=即y∈(0);1=e0>=>=即z∈(1)∴y<z<x.故选D.点评:本题考查不等式比较大小掌握对数函数与指数函数的性质是解决问题的关键属于基础题.5.(5分)(2009•辽宁)设等比数列{an}的前n项和为Sn若=3则=()A.2B.C.D.3考点:等比数列的前n项和.分析:首先由等比数列前n项和公式列方程并解得q3然后再次利用等比数列前n项和公式则求得答案.解答:解:设公比为q则==1+q3=3所以q3=2所以===.故选B.点评:本题考查等比数列前n项和公式.6.(5分)(2012•东城区模拟)已知约束条件若目标函数z=x+ay(a≥0)恰好在点(22)处取得最大值则a的取值范围为()A.0<a<B.a≥C.a>D.0<a<考点:简单线性规划的应用.专题:计算题;数形结合.分析:先根据约束条件画出可行域再利用几何意义求最值的方法利用直线斜率之间的关系只需求出直线z=x+ay的斜率的取值范围即可.解答:解:画出已知约束条件的可行域为△ABC内部(包括边界)如图易知当a=0时不符合题意;当a>0时由目标函数z=x+ay得y=﹣x+则由题意得﹣3=kAC<﹣<0故a>.综上所述a>.故选C.点评:本题主要考查了简单的线性规划以及利用几何意义求最值属于基础题.由于线性规划的介入借助于平面区域可以研究函数的最值或最优解;借助于平面区域特性我们还可以优化数学解题借助于规划思想巧妙应用平面区域为我们的数学解题增添了活力.7.(5分)(2010•辽宁)设ω>0函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合则ω的最小值是()A.B.C.D.3考点:函数y=As