预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共33页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图在中AB=AC=5点在上且点E是AB上的动点连结点G分别是BCDE的中点连接当AG=FG时线段长为()A.B.C.D.42、如图在四边形ABCD中则AB=()A.4B.5C.D.3、如图是的内接三角形是直径则的长为()A.4B.C.D.4、如图、分别切于点、点为优弧上一点若则的度数为()A.B.C.D.5、有一个圆的半径为5则该圆的弦长不可能是()A.1B.4C.10D.116、如图是⊙的直径点C为圆上一点的平分线交于点D则⊙的直径为()A.B.C.1D.27、已知⊙O的半径等于3圆心O到点P的距离为5那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定8、如图矩形中分别是边上的动点以为直径的与交于点.则的最大值为().A.48B.45C.42D.409、如图所示一个半径为r(r<1)的图形纸片在边长为10的正六边形内任意运动则在该六边形内这个圆形纸片不能接触到的部分面积是()A.B.C.D.10、已知扇形的圆心角为半径为则弧长为()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图AB是⊙O的弦点C在过点B的切线上且OC⊥OAOC交AB于点P已知∠OAB=22°则∠OCB=__________.2、如图在平面直角坐标系中点A(01)、B(0﹣1)以点A为圆心AB为半径作圆交x轴于点C、D则CD的长是____.3、如图在射线AC上顺次截取以为直径作交射线于、两点则线段的长是__________cm.4、如图△ABC内接于☉O∠CAB=30°∠CBA=45°CD⊥AB于点D若☉O的半径为2则CD的长为_____5、如图已知正六边形ABCDEF的边长为2对角线CF和BE相交于点N对角线DF与BE相交于点M则MN=_____.三、解答题(5小题每小题10分共计50分)1、在平面直角坐标系中⊙C与x轴交于点AB且点B的坐标为(80)与y轴相切于点D(04)过点ABD的抛物线的顶点为E.(1)求圆心C的坐标与抛物线的解析式;(2)判断直线AE与⊙C的位置关系并说明理由;(3)若点MN是直线y轴上的两个动点(点M在点N的上方)且MN=1请直接写出的四边形EAMN周长的最小值.2、如图为的直径射线交于点F点C为劣弧的中点过点C作垂足为E连接.(1)求证:是的切线;(2)若求阴影部分的面积.3、如图⊙O的半径弦AB于点C连结AO并延长交⊙O于点E连结EC.已知.(1)求⊙O半径的长;(2)求EC的长.4、如图在△ABC中AB=AC∠BAC与∠ABC的角平分线相交于点EAE的延长线交△ABC的外接圆于点D连接BD.(1)求证:∠BAD=∠DBC;(2)证明:点B、E、C在以点D为圆心的同一个圆上;(3)若AB=5BC=8求△ABC内心与外心之间的距离.5、等边三角形的边长为1厘米面积为0.43平方厘米.以点为圆心长为半径在三角形外画弧交的延长线于点形成扇形;以点为圆心长为半径画弧交的延长线于点形成扇形;以点为圆心长为半径画弧交的延长线于点形成扇形.(1)求所得的图形的周长;(结果保留)(2)照此规律画至第十个扇形求所围成的图形的面积以及所画出的所有弧长的和.(结果保留)-参考答案-一、单选题1、A【解析】【分析】连接DFEF过点F作FN⊥ACFM⊥AB结合直角三角形斜边中线等于斜边的一半求得点ADFE四点共圆∠DFE=90°然后根据勾股定理及正方形的判定和性质求得AE的长度从而求解.【详解】解:连接DFEF过点F作FN⊥ACFM⊥AB∵在中点G是DE的中点∴AG=DG=EG又∵AG=FG∴点ADFE四点共圆且DE是圆的直径∴∠DFE=90°∵在Rt△ABC中AB=AC=5点是BC的中点∴CF=BF=FN=FM=又∵FN⊥ACFM⊥AB∴四边形NAMF是正方形∴AN=AM=FN=又∵∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中DE=故选:A.【考点】本题考查直径所对的圆周角是90°四点共圆及正方形的判定和性质和用勾股定理解直角三角形掌握相关性质