预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图是的内接三角形是直径则的长为()A.4B.C.D.2、已知点在半径为8的外则()A.B.C.D.3、如图正三角形PMN的顶点分别是正六边形ABCDEF三边的中点则三角形PMN与六边形ABCDEF的面积之比()A.1:2B.1:3C.2:3D.3:84、如图在中以点为圆心为半径的圆与相交于点则的长为()A.2B.C.3D.5、如图AB是的直径点B是弧CD的中点AB交弦CD于E且则()A.2B.3C.4D.56、如图物体由两个圆锥组成其主视图中.若上面圆锥的侧面积为1则下面圆锥的侧面积为()A.2B.C.D.7、如图已知是的两条切线AB为切点线段交于点M.给出下列四种说法:①;②;③四边形有外接圆;④M是外接圆的圆心其中正确说法的个数是()A.1B.2C.3D.48、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个9、如图公园内有一个半径为18米的圆形草坪从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点为圆心小强从走到走便民路比走观赏路少走()米.A.B.C.D.10、如图在△ABC中AG平分∠CAB使用尺规作射线CD与AG交于点E下列判断正确的是()A.AG平分CDB.C.点E是△ABC的内心D.点E到点ABC的距离相等第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在⊙O中是⊙O的直径点是点关于的对称点是上的一动点下列结论:①;②;③;④的最小值是10.上述结论中正确的个数是_________.2、如图所示是一个几何体的三视图如果一只蚂蚁从这个几何体的点出发沿表面爬到的中点处则最短路线长为__________.3、如图A、D是⊙O上的两点BC是直径若∠D=32°则∠OAC=_______度.4、如图A、B、C、D为一个正多边形的相邻四个顶点O为正多边形的中心若∠ADB=12°则这个正多边形的边数为____________5、圆锥的底面半径为3侧面积为则这个圆锥的母线长为________.三、解答题(5小题每小题10分共计50分)1、【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1已知扇形请你用圆规和无刻度的直尺过圆心作一条直线使扇形的面积被这条直线平分;【问题联想】如图2已知线段请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3已知扇形请你用圆规和无刻度的直尺作一条以点为圆心的圆弧使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法但需保留作图痕迹)2、等边三角形的边长为1厘米面积为0.43平方厘米.以点为圆心长为半径在三角形外画弧交的延长线于点形成扇形;以点为圆心长为半径画弧交的延长线于点形成扇形;以点为圆心长为半径画弧交的延长线于点形成扇形.(1)求所得的图形的周长;(结果保留)(2)照此规律画至第十个扇形求所围成的图形的面积以及所画出的所有弧长的和.(结果保留)3、如图已知点在上点在外求作一个圆使它经过点并且与相切于点.(要求写出作法不要求证明)4、(1)课本再现:在中是所对的圆心角是所对的圆周角我们在数学课上探索两者之间的关系时要根据圆心O与的位置关系进行分类.图1是其中一种情况请你在图2和图3中画出其它两种情况的图形并从三种位置关系中任选一种情况证明;(2)知识应用:如图4若的半径为2分别与相切于点AB求的长.5、如图OC为⊙O的半径弦AB⊥OC于点DOC=10CD=4求AB的长.-参考答案-一、单选题1、B【解析】【分析】连接BO根据圆周角定理可得再由圆内接三角形的性质可得OB垂直平分AC再根据正弦的定义求解即可.【详解】如图连接OB∵是的内接三角形∴OB垂直平分AC∴又∵∴∴又∵AD=8∴AO=4∴解得:∴.故答案选B.【考点】本题主要考查了圆的垂径定理的应用根据圆周角定理求角度是解题的关键.2、A【解析】【分析】根据点P与⊙O的位置关系即可确定OP的范围.【详解】解:∵点P在圆O的外部∴点P到圆心O的距离大于