基于一维卷积神经网络的雷达目标多普勒像分类识别方法.pdf
小沛****文章
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于一维卷积神经网络的雷达目标多普勒像分类识别方法.pdf
本发明涉及一种基于一维卷积神经网络的雷达目标多普勒像分类识别方法,本发明通过雷达设备采集到原始回波数据,经过脉冲压缩、动目标检测得到包含目标和杂波的每帧数据,根据不同目标的多普勒差异性,提取出目标所在距离单元内的一维多普勒像,构成数据集;设计一维卷积神经网络模型,对模型参数进行初始化;通过前向传播和后向传播过程训练网络,并计损失函数;迭代训练直到损失函数收敛或者达到最大次数,训练结束得到一维卷积神经网络模型。
基于卷积神经网络的雷达目标HRRP分类识别方法.pptx
,CONTENTS01.02.卷积神经网络的结构卷积神经网络的学习过程卷积神经网络的优势03.HRRP图像的采集HRRP图像的预处理流程预处理过程中的关键技术04.卷积神经网络在图像分类中的应用构建基于卷积神经网络的HRRP图像分类器训练和优化网络模型05.实验数据集介绍实验结果展示结果分析与其他方法的比较06.本研究的主要贡献存在的不足与局限性未来研究方向感谢您的观看!
基于卷积神经网络和Bert的雷达目标识别方法.pdf
本发明公开了一种基于卷积神经网络和Bert的雷达目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,对数据进行强度归一化和重心对齐处理;S2,将上述处理的HRRP样本输入到CNN模块,用CNN对处理后的样本进行提取特征;S3,用Bert处理CNN提取的有效特征,提取更加深层的特征;S4,搭建分类器,对HRRP目标分类,对Bert的输出,再次使用注意力机制,将更有效的特征进行保留,最后采用softmax对网络的输出进行分类;S5,将经过S1处理后的HRRP测试集送入S2、S3、S4步骤中已训练完
基于多基地雷达微多普勒和卷积神经网络的人体识别方法.pdf
本发明涉及一种基于多基地雷达微多普勒和卷积神经网络的人体识别方法,属于雷达目标识别技术领域。本方法中使用多基地雷,缓解了视角变化带来的回波信号差异,增强了识别鲁棒性,提高了识别准确率。采用卷积神经网络进行数据处理,无需手工设计特征,具有一定通用性且识别正确率性能优异。本方法采用迁移学习技术,在卷积神经网络中利用了RGB光学图像预训练权重,并利用具有类似RGB光学图像的三通道多分辨率时频图作为卷积神经网络的输入,在匹配了预训练权重维度的同时,相比单分辨率时频图提供了更多的信息,本方法能够在多种人体识别任务中
基于卷积神经网络的空间目标多模式雷达分类方法.pdf
本发明公开了一种基于卷积神经网络的空间目标多模式雷达分类方法,属于雷达信号处理技术领域;本发明建立了进动空间目标的微多普勒频率及雷达回波模型,进而基于一维距离像和时频谱图进行多模式数据库的构建;此外,设计了基于空域图像融合的卷积神经网络,用于融合空间目标的多模式雷达数据从而进行目标分类,可弥补现有方法目标特征库不完备、网络参数不共用以及不易扩展的不足,对于不同的多模式雷达数据,网络特征提取及融合的参数完全共用,降低了网络结构的复杂度和网络的计算量,为基于雷达数据的空间态势感知、多信源雷达数据融合以及空间目