预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

概率的基本性质想一想?这些事件之间有什么关系?一:事件的关系与运算例如:例如:事件A与事件B互为对立事件的含义是:这两个事件在任何一次试验中有且仅有一个发生。帮助理解互斥事件与对立事件的区别与联系1、例题分析: 例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A:命中环数大于7环 事件B:命中环数为10环; 事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。 解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生). 二:概率的基本性质2)概率的加法公式(互斥事件时同时发生的概率)3)对立事件有一个发生的概率 1、如果某人在某比赛(这种比赛不会出现“和”的情况)中获胜的概率是0.3,那么他输的概率是多少? 0.7 2、利用简单随机抽样的方法抽查了某校200名学生。其中戴眼镜的学生有123人。如在这个学校随机调查一名学生,问他的戴眼镜的概率近似多少? 0.615 3、某工厂为了节约用电,规定每天的用电量指标为1000千瓦时,按照上个月的用电记录,30天中有12天的用电量超过指标,若第二个月仍没有具体的节电设施,试求该月第一天用电量超过指标的概率近似值4、一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是() (A)至少有一次中靶。(B)两次都中靶。 (C)只有一次中靶。(D)两次都不中靶。 5、把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是() (A)对立事件。(B)互斥但不对立事件。 (C)不可能事件。(D)以上都不是。 4、课堂小结: 概率的基本性质: 1)必然事件概率为1, 不可能事件概率为0, 因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B); 3)若事件A与B为对立事件,则A∪B为必然事件, 所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);3)互斥事件与对立事件的区别与联系: 互斥事件是指事件A与事件B在一次试验中不会同时发生, 其具体包括三种不同的情形: (1)事件A发生且事件B不发生; (2)事件A不发生且事件B发生; (3)事件A与事件B同时不发生. 而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形; (1)事件A发生B不发生; (2)事件B发生事件A不发生, 对立事件互斥事件的特殊情形。概率的基本性质