预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

制作人:林科审核人:杨海英执教者:林科使用时间:NO.10 江华三中2012年高一数学必修3导学案 课题§3.1.3概率的基本性质学习 目标1、正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念; 2、概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B) 3、正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 4、培养方程思想、正难则反的解题策略。学习 重点概率的加法公式及其应用,事件的关系与运算学习 难点概率的加法公式及其应用,事件的关系与运算设计学、教内容批注、改进 师 生 互 动 环 节一、创设问题情境:(P119探究) (1)集合有相等、包含关系, 如{1,3}={3,1},{2,4}{2,3,4,5}等; 2、在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}…… 师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗? 二、知识探究(一): 事件的包含、并事件、交事件、相等事件 学生阅读教材P119 知识探究(二):概率的几个基本性质 1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B) 三、例题探究 例1、一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A:命中环数大于7环;事件B:命中环数为10环; 事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。 例2、抛掷一骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现偶数点”,已知P(A)=,P(B)=,求出“出现奇数点或偶数点”. 分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解. 例3、如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问: (1)取到红色牌(事件C)的概率是多少? (2)取到黑色牌(事件D)的概率是多少? 分析:事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1—P(C). 例4、袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少? 分析:利用方程的思想及互斥事件、对立事件的概率公式求解. 当堂练习:教材,第1--5题课堂 小结概率的基本性质: 1、(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; (2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);(3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B); 2、互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。作业 布置P123T1,6B1,2教学 反思