预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

【步步高】(浙江专用)2017年高考数学专题五数列第33练等差数列练习 训练目标(1)等差数列的概念;(2)等差数列的通项公式和前n项和公式;(3)等差数列的性质.训练题型(1)等差数列基本量的运算;(2)等差数列性质的应用;(3)等差数列的前n项和及其最值.解题策略(1)等差数列中的五个基本量知三求二;(2)等差数列{an}中,若m+n=p+q,则am+an=ap+aq;(3)等差数列前n项和Sn的最值求法:找正负转折项或根据二次函数的性质. 一、选择题 1.等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于() A.8B.10C.12D.14 2.在等差数列{an}中,a9=eq\f(1,2)a12+6,则数列{an}的前11项和S11等于() A.24B.48C.66D.132 3.(2015·兰州二模)已知数列{an},{bn}都是等差数列,Sn,Tn分别是它们的前n项和,并且eq\f(Sn,Tn)=eq\f(7n+1,n+3),则eq\f(a2+a5+a17+a22,b8+b10+b12+b16)等于() A.eq\f(34,5)B.5C.eq\f(31,4)D.eq\f(31,5) 4.(2015·泉州质检)设等差数列{an}的前n项和为Sn,若a5+a14=10,则S18等于() A.20B.60C.90D.100 5.设等差数列{an}的前n项和为Sn,且满足S19>0,S20<0,则eq\f(S1,a1),eq\f(S2,a2),…,eq\f(S19,a19)中的最大项为() A.eq\f(S8,a8) B.eq\f(S9,a9) C.eq\f(S10,a10) D.eq\f(S11,a11) 6.在等差数列{an}中,a1=-2015,其前n项和为Sn,若eq\f(S12,12)-eq\f(S10,10)=2,则S2015的值等于() A.-2015 B.-2014 C.-2013 D.-2012 7.(2015·吉林实验中学模拟)已知Sn是等差数列{an}的前n项和,S10>0并且S11=0,若Sn≤Sk对n∈N*恒成立,则正整数k构成的集合为() A.{5}B.{6}C.{5,6}D.{7} 8.(2015·通州模拟)已知{an}是等差数列,Sn为其前n项和,若S21=S4000,O为坐标原点,P(1,an),Q(2011,a2011),则eq\o(OP,\s\up6(→))·eq\o(OQ,\s\up6(→))等于() A.2011 B.-2011 C.0 D.1 二、填空题 9.设数列{an}的通项公式为an=2n-10(n∈N*),则|a1|+|a2|+…+|a15|=________. 10.(2015·东北三省三校联考)已知正项数列{an}满足a1=2,a2=1,且eq\f(an,an+1)+eq\f(an,an-1)=2,则a12=________. 11.(2015·浙江新高考单科综合调研)已知等差数列{an},{bn}的前n项和分别为Sn,Tn,若对于任意的自然数n,都有eq\f(Sn,Tn)=eq\f(2n-3,4n-1),则eq\f(a3+a15,2(b3+b9))+eq\f(a3,b2+b10)=________. 12.(2015·湖南名校联盟2月联考)设等差数列{an}的前n项和为Sn,若S6>S7>S5,则满足SkSk+1<0的正整数k=________. 答案解析 1.C[设等差数列公差为d,∵S3=3a1+eq\f(3×2,2)×d=6+3d=12,∴d=2. ∴a6=a1+5d=12.故选C.] 2.D[∵a9=eq\f(1,2)a12+6,∴2a9=a12+12. 又∵2a9=a12+a6,∴a6=12. ∴S11=eq\f(11(a1+a11),2)=11×a6=132.] 3.D[设等差数列{an},{bn}的公差分别为d1,d2, 则eq\f(a2+a5+a17+a22,b8+b10+b12+b16)=eq\f(4a1+42d1,4b1+42d2)=eq\f(2a1+21d1,2b1+21d2) =eq\f(a1+a22,b1+b22)=eq\f(S22,T22)=eq\f(7×22+1,22+3)=eq\f(31,5).] 4.C[因为{an}是等差数列, 所以S18=eq\f(18(a1+a18),2)=9(a5+a14)=90,故选C.] 5.C[因为{an}是等差数列, 所以S19=19a10>0,S20=10(