预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE-7- 第2讲空间点、线、面的位置关系 1.(2019·揭阳模拟改编)设平面α,β,直线a,b,a⊂α,b⊂α,则“a∥β,b∥β”是“α∥β”的________条件. [解析]由平面与平面平行的判定定理可知,若直线a,b是平面α内两条相交直线,且a∥β,b∥β,则α∥β;当α∥β,若a⊂α,b⊂α,则a∥β,b∥β,因此“a∥β,b∥β”是“α∥β”的必要不充分条件. [答案]必要不充分 2.在正方体ABCD­A1B1C1D1中,E为DD1的中点,则BD1与过点A、E、C的平面的位置关系是________. [解析]连结AC、BD相交于一点O,连结OE、AE、EC, 因为四边形ABCD为正方形, 所以DO=BO. 而DE=D1E,所以EO为△DD1B的中位线, 所以EO∥D1B,所以BD1∥平面AEC. [答案]BD1∥平面AEC 3.(2019·南京模拟)四棱锥P­ABCD的底面ABCD是边长为2的正方形,PA⊥底面ABCD且PA=4,则PC与底面ABCD所成角的正切值为________. [解析]因为PA⊥底面ABCD,所以PC在底面ABCD上的射影为AC,∠PCA就是PC与底面ABCD所成的角,tan∠PCA=eq\f(PA,AC)=eq\r(2). [答案]eq\r(2) 4.(2019·南京、盐城模拟)已知平面α,β,直线m,n,给出下列命题: ①若m∥α,n∥β,m⊥n,则α⊥β; ②若α∥β,m∥α,n∥β,则m∥n; ③若m⊥α,n⊥β,m⊥n,则α⊥β; ④若α⊥β,m⊥α,n⊥β,则m⊥n. 其中是真命题的是________.(填写所有真命题的序号) [解析]①错误,还有可能α,β相交;②错误,直线m,n可能平行、相交或异面;③④正确. [答案]③④ 5.(2019·镇江期末)如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A­BCD,则在三棱锥A­BCD中,下列命题正确的是________.(填序号) ①平面ABD⊥平面ABC;②平面ADC⊥平面BDC; ③平面ABC⊥平面BDC;④平面ADC⊥平面ABC. [解析]因为在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,所以BD⊥CD, 又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,则CD⊥AB, 又AD⊥AB,AD∩CD=D,所以AB⊥平面ADC, 又AB⊂平面ABC,所以平面ABC⊥平面ADC. [答案]④ 6.(2019·无锡期末)已知两条直线m、n,两个平面α、β.给出下面四个命题: ①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n; ③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β. 其中正确命题的序号是________. [解析]两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面,故①正确;两平面平行,分别在这两平面内的两直线可能平行,也可能异面,故②错;m∥n,m∥α时,n∥α或n⊂α,故③错;由α∥β,m⊥α得m⊥β,由m⊥β,n∥m得n⊥β,故④正确. [答案]①④ 7.(2019·苏州调研)正方体ABCD­A1B1C1D1的棱长为2,点M为CC1的中点,点N为线段DD1上靠近D1的三等分点,平面BMN交AA1于点Q,则线段AQ的长为________. [解析]如图所示,在线段DD1上靠近点D处取一点T,使得DT=eq\f(1,3),因为N是线段DD1上靠近D1的三等分点,故D1N=eq\f(2,3),故NT=2-eq\f(1,3)-eq\f(2,3)=1,因为M为CC1的中点,故CM=1,连接TC,由NT∥CM,且CM=NT=1,知四边形CMNT为平行四边形,故CT∥MN,同理在AA1上靠近A处取一点Q′,使得AQ′=eq\f(1,3),连接BQ′,TQ′,则有BQ′∥CT∥MN,故BQ′与MN共面,即Q′与Q重合,故AQ=eq\f(1,3). [答案]eq\f(1,3) 8.如图,∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于点E,AF⊥DC交DC于点F,且AD=AB=2,则三棱锥D­AEF体积的最大值为________. [解析]因为DA⊥平面ABC,所以DA⊥BC,又BC⊥AC,DA∩AC=A,所以BC⊥平面ADC,所以BC⊥AF.又AF⊥CD,BC∩CD=C,所以AF⊥平面DCB,所以AF⊥EF,AF⊥DB.又DB⊥AE,AE∩AF=A,所以DB⊥平面AEF,所以DE为三棱锥D­AEF的高.因为AE为等腰直角三角形ABD斜边上的高,所以AE=eq