预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第2讲空间点、线、面的位置关系 高考定位1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择、填空题的形式,题目难度较小;2.以解答题的形式考查空间平行、垂直的证明,并常与几何体的表面积、体积相渗透. 真题感悟 1.(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() 解析法一对于选项B,如图(1)所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.因此A项中直线AB与平面MNQ不平行. 图(1)图(2) 法二对于选项A,其中O为BC的中点(如图(2)所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行.A项中直线AB与平面MNQ不平行. 答案A 2.(2018·全国Ⅰ卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A.eq\f(3\r(3),4) B.eq\f(2\r(3),3) C.eq\f(3\r(2),4) D.eq\f(\r(3),2) 解析如图,依题意,平面α与棱BA,BC,BB1所在直线所成角都相等,容易得到平面AB1C符合题意,进而所有平行于平面AB1C的平面均符合题意. 由对称性,知过正方体ABCD-A1B1C1D1中心的平面面积应取最大值,此时截面为正六边形EFGHIJ.正六边形EFGHIJ的边长为eq\f(\r(2),2),将该正六边形分成6个边长为eq\f(\r(2),2)的正三角形.故其面积为6×eq\f(\r(3),4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))eq\s\up12(2)=eq\f(3\r(3),4). 答案A 3.(2017·全国Ⅰ卷)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为eq\f(8,3),求该四棱锥的侧面积. (1)证明∵∠BAP=∠CDP=90°, ∴AB⊥PA,CD⊥PD. ∵AB∥CD,∴AB⊥PD. 又∵PA∩PD=P,PA,PD⊂平面PAD, ∴AB⊥平面PAD. ∵AB⊂平面PAB, ∴平面PAB⊥平面PAD. (2)解取AD的中点E, 连接PE. ∵PA=PD,∴PE⊥AD. 由(1)知,AB⊥平面PAD,PE⊂平面PAD,故AB⊥PE,又AB∩AD=A,可得PE⊥平面ABCD. 设AB=x,则由已知可得AD=eq\r(2)x,PE=eq\f(\r(2),2)x, 故四棱锥P-ABCD的体积 VP-ABCD=eq\f(1,3)AB·AD·PE=eq\f(1,3)x3. 由题设得eq\f(1,3)x3=eq\f(8,3),故x=2. 从而PA=PD=AB=DC=2,AD=BC=2eq\r(2),PB=PC=2eq\r(2), 可得四棱锥P-ABCD的侧面积为 eq\f(1,2)PA·PD+eq\f(1,2)PA·AB+eq\f(1,2)PD·DC+eq\f(1,2)BC2sin60°=6+2eq\r(3). 考点整合 1.直线、平面平行的判定及其性质 (1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α. (2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b. (3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β. (4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b. 2.直线、平面垂直的判定及其性质 (1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α. (2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b. (3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β. (4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β. 热点一空间点、线、面位置关系的判定 【例1】(2018·成都诊断)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β.有下列命题: ①若α∥β,则m∥n; ②若α∥β,则m∥β; ③若α∩β=l,且m⊥l,n⊥l,则α⊥β; ④若α∩β=l,且m⊥l,m⊥n,则α⊥β. 其中真命题的个数是() A.0 B.1 C.2 D.3 解析①若α∥