预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高考数学总复习:函数的应用 知识网络目标认知考试大纲要求:1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);2.了解函数在一点处的导数的定义和掌握导数的几何意义;3.熟记基本导数公式;4.掌握两个函数和、差、积、商的求导法则;5.了解复合函数的求导法则会求某些简单函数的导数;6.理解可导函数的单调性与其导数的关系,能利用导数研究函数的单调性;7.了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号),会求给定函数的极大值、极小值,会求给定函数在闭区间上的最大值、最小值;8.提高应用知识解决实际问题的能力。重点:利用导数判断函数单调性;函数极值与最值的区别与联系。会求一些函数的(极)最大值与(极)最小值难点:利用导数判断函数单调性时有关字母讨论的问题;有关函数最值的实际应用问题的学习。知识要点梳理知识点一:导数的相关概念1、导数的物理意义:事物的瞬时变化率,如:表示运动物体在时刻的瞬时速度;气球半径关于体积的导数就是气球的瞬时膨胀率等.2、导数的几何意义:过曲线y=f(x)上任意一点(x,y)的切线的斜率就是f(x)在x处的导数,即。也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是,切线方程为。知识点二:导数的运算1、几种常见函数的导数公式:①;②(a∈Q);③;④;⑤⑥⑦⑧2、导数的四则运算法则:①;②;③知识点三:导数的应用1、求切线方程的一般方法,可分两步:(1)求出函数在处的导数;(2)利用直线的点斜式得切线方程。注意:求切线方程,首先要判断所给点是否在曲线上.若在曲线上,可用上法求解;若不在曲线上,可设出切点,写出切线方程,结合已知条件求出切点坐标,从而得方程.2、判定函数的单调性(1)函数的单调性与其导数的关系设函数y=f(x)在某个区间内可导,则当时,y=f(x)在相应区间上为增函数;当时,y=f(x)在相应区间上为减函数;当恒有时,y=f(x)在相应区间上为常数函数。注意:①在区间(a,b)内,是f(x)在(a,b)内单调递增的充分不必要条件!例如:而f(x)在R上递增。②学生易误认为只要有点使,则f(x)在(a,b)上是常函数,要指出个别导数为零不影响函数的单调性,同时要强调只有在这个区间内恒有,这个函数y=f(x)在这个区间上才为常数函数。③要关注导函数图象与原函数图象间关系。(2)利用导数判断函数单调性的基本步骤(1)确定函数f(x)的定义域;(2)求导数;(3)在定义域内解不等式;(4)确定f(x)的单调区间。3、求函数的极值与最值(1)极值的概念一般地,设函数y=f(x)在x=x0及其附近有定义,(1)如果对于x0附近的所有点,都有:f(x)<f(x0),称f(x0)为函数f(x)的一个极大值,记作y极大值=f(x0);(2)如果对于x0附近的所有点,都有:f(x)>f(x0),称f(x0)为函数f(x)的—个极小值,记作y极小值=f(x0)。极大值与极小值统称极值。在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。注意:①在函数的极值定义中,一定要明确函数y=f(x)在x=x0及其附近有定义,否则无从比较。②函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念,在函数的整个定义域内可能有多个极值,也可能无极值。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。③极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值。极小值不一定是整个定义区间上的最小值。④函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。⑤连续函数的某一点是极值点的充要条件是该点两侧的导数异号。我们主要讨论可导函数的极值问题,但是函数的不可导点也可能是极值点。如某些间断点也可能是极值点,再如y=|x|,x=0。⑥可导函数在某点取得极值,则该点的导数一定为零,反之不成立。在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有。但反过来不一定。如函数y=x3,在x=0处,曲线的切线是水平的,但这点的函数值既不比它附近的点的函数值大,也不比它附近的点的函数值小。(2)求极值的步骤①确定函数的定义域;②求导数;③求方程的根;④检查在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值。(最好通过列表法)4、求函数的最值函数的最值表示函数在定义域内值的整体情况。连续函数f(x)在闭区间[a,b]上必有一个最大值和一个最小值,但是最值点可以不唯一;但在开区间(a,b)内连续的函数不一定有最大值和最小值。(1)最值与极值的区别与联系:①函数最