预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第3讲磁场对运动电荷的作用 [目标定位]1.知道什么是洛伦兹力,会用左手定则判断洛伦兹力的方向.2.掌握洛伦兹力公式的推导过程,会计算洛伦兹力的大小.3.会处理洛伦兹力作用下的带电体的运动问题. 从安培力到洛伦兹力 1.洛伦兹力:当电荷在磁场中运动时,一般会受到磁场力的作用.物理学把磁场对运动电荷的作用力叫做洛伦兹力. 2.洛伦兹力的大小:实际上安培力可以看成是大量运动电荷受到洛伦兹力的宏观表现.由推导可知,洛伦兹力f与运动电荷的电荷量q、运动速度v、磁感应强度B有关. 当B∥v时,洛伦兹力为零. 当v⊥B时f的大小可写为f=qvB. 当运动电荷速度v的方向与磁感应强度B的夹角为θ时,洛伦兹力公式为f=qvBsin_θ. 3.洛伦兹力的方向:用左手定则来判定:伸开左手,拇指与其余四指垂直,且处于同一平面内,让磁感线垂直穿过手心,四指指向正电荷运动的方向,那么拇指所指的方向就是正电荷所受洛伦兹力的方向. 一、洛伦兹力的方向 1.f⊥B,f⊥v,f垂直于B、v确定的平面,但B与v不一定垂直. 2.洛伦兹力的方向随电荷运动方向的变化而变化.但无论怎么变化,洛伦兹力都与运动方向垂直,故洛伦兹力永不做功,它只改变电荷的运动方向,不改变电荷的速度大小. 例1如下图所示的磁感应强度为B、电荷的运动速度为v和磁场对电荷的作用力f的相互关系图中,画得正确的是(其中B、f、v两两垂直)() 答案C 解析由于B、f、v两两垂直,根据左手定则得:A、B、D选项中受洛伦兹力都与图示F的方向相反,故A、B、D错误,C正确. 借题发挥确定洛伦兹力的方向还需明确运动电荷的电性,特别注意负电荷的运动方向与左手四指的指向应相反. 二、洛伦兹力的大小 1.洛伦兹力的大小 f=qvBsinθ,θ为电荷运动的方向与磁感应强度方向的夹角. (1)当电荷运动方向与磁场方向垂直时:f=qvB; (2)当电荷运动方向与磁场方向平行时:f=0; (3)当电荷在磁场中静止时:f=0. 2.洛伦兹力与安培力的关系 (1)安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现.而洛伦兹力是安培力的微观本质. (2)洛伦兹力对电荷不做功,但安培力却可以对导体做功. 3.洛伦兹力与电场力的比较 (1)洛伦兹力f=qvB:只有运动电荷,且运动电荷的运动方向与磁场方向不平行时才受到洛伦兹力;洛伦兹力的方向总与速度方向垂直,用左手定则判断. (2)电场力F=qE:只要是电荷在电场中就要受到电场力;电场力的方向与场强E同线(正电荷与E同向,负电荷与E反向). 例2在图1所示的各图中,匀强磁场的磁感应强度均为B,带电粒子的速率均为v,带电荷量均为q.试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向. 图1 答案(1)qvB垂直v向左上方(2)eq\f(1,2)qvB垂直纸面向里(3)不受洛伦兹力(4)qvB垂直v向左上方 解析(1)因v⊥B, 所以F=qvB,方向与v垂直向左上方. (2)v与B的夹角为30°,将v分解成垂直于磁场的分量和平行于磁场的分量,v⊥=vsin30°,f=qvBsin30°=eq\f(1,2)qvB.方向垂直纸面向里. (3)由于v与B平行,所以不受洛伦兹力. (4)v与B垂直,f=qvB,方向与v垂直向左上方. 借题发挥确定洛伦兹力的大小时需明确“v”与“B”的方向夹角θ. 针对训练在如下图所示的匀强电场和匀强磁场共存的区域内,电子可能沿水平方向向右做直线运动的是() 答案BC 三、洛伦兹力作用下的带电体的运动 分析带电体在磁场中的受力运动问题,与力学方法相似,首先要受力分析,然后根据运动状态,选择恰当的物理规律. 例3一个质量m=0.1g的小滑块,带有q=5×10-4C的电荷量,放置在倾角α=30°的光滑斜面上(绝缘),斜面固定且置于B=0.5T的匀强磁场中,磁场方向垂直纸面向里,如图2所示,小滑块由静止开始沿斜面滑下,斜面足够长,小滑块滑至某一位置时,要离开斜面(g取10m/s2).求: 图2 (1)小滑块带何种电荷; (2)小滑块离开斜面时的瞬时速度多大; (3)该斜面长度至少多长. 答案(1)负电荷(2)3.5m/s(3)1.2m 解析(1)小滑块在沿斜面下滑的过程中,受重力mg、斜面支持力N和洛伦兹力f作用,如图所示,若要使小滑块离开斜面,则洛伦兹力f应垂直斜面向上,根据左手定则可知,小滑块应带负电荷. (2)小滑块沿斜面下滑的过程中,垂直于斜面的加速度为零,由平衡条件得f+N=mgcosα,当支持力N=0时,小滑块脱离斜面.设此时小滑块速度为vmax,则此时小滑块所受洛伦兹力f=qvmaxB, 所以vmax=eq\f(mgcosα,qB)=eq\f(0.1×10-3×10×\f(\r(3),2