预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种适合红外序列图像的背景建模方法 Title:BackgroundModelingforInfraredSequenceImages Abstract: Backgroundmodelingisacrucialtaskincomputervisionapplications,includingsurveillancesystems,objectdetection,andtracking.Infrared(IR)sequenceimagesoftenpossessdistinctivecharacteristicssuchaslowcontrast,lowsignal-to-noiseratio,anddynamicthermaldistribution.TheseuniquepropertiesposechallengesindevelopinganeffectivebackgroundmodelingmethodforIRsequenceimages.Inthispaper,weproposeanovelbackgroundmodelingapproachforIRsequenceimages,aimingtoaccuratelydetectforegroundobjectsandmodelthedynamicthermalbackground.Ourmethodleveragestheadvantagesofbothtraditionalstatisticalmodelingtechniquesanddeeplearningalgorithmstoachieverobustandaccuratebackgroundestimation. 1.Introduction: Infraredimaginghasbeenwidelyemployedinvariousfieldslikemilitary,medicalimaging,andsurveillanceduetoitsabilitytocaptureheatradiation.However,analyzingIRsequenceimagesremainschallengingduetotheiruniquecharacteristicsanddifferentdistributionofinformationcomparedtovisibleimages.BackgroundmodelingplaysacrucialroleinIRsequenceimageanalysisasitaimstosegmentoutmovingobjectsanddetectanomalies.TraditionalbackgroundmodelingmethodsdesignedforvisibleimagesarenotdirectlyapplicabletoIRsequenceimagesduetothedifferencesinnoisecharacteristicsandtemperaturedynamics.Hence,thereisaneedforaspecializedbackgroundmodelingmethodforIRsequenceimages. 2.BackgroundModelingTechniquesforIRSequenceImages: 2.1StatisticalModelingTechniques: TraditionalstatisticalmodelingtechniqueslikeGaussianMixtureModels(GMM)andKernelDensityEstimation(KDE)havebeenwidelyusedinbackgroundmodelingforvisibleimagesequences.However,thesetechniquesmaynotbedirectlyapplicabletoIRsequencesduetotheirsensitivitytonoiseandlowcontrast.Modificationstoexistingstatisticalmodels,suchasincorporatingpixel-leveltemperatureinformationandnoisemodeling,canenhancetheperformance. 2.2DeepLearning-basedTechniques: Deeplearninghasmaderemarkableprogressincomputervisiontasks,includingbackgroundmodeling.Convoluti