预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种解无约束优化问题的新的非单调自适应信赖域方法(英文) NewNonmonotonicAdaptiveTrustRegionMethodsforSolvingUnconstrainedOptimizationProblems Introduction Optimizationproblemsareubiquitousinengineering,economics,andsciences,amongotherfields.Manypracticalapplicationsrequirefindinganoptimalsolutionforanobjectivefunctionwhilesatisfyingcertainconstraints.Insomecases,however,theproblemisunconstrained,meaningthattheoptimizationprocesscanrangeovertheentirespace.Forsuchcases,severalmethodshavebeenproposed,includinggradientdescent,conjugategradient,quasi-Newton,andtrustregionmethods.Inthispaper,weproposeanewfamilyofnonmonotonicadaptivetrustregionmethodsforsolvingunconstrainedoptimizationproblems. Background Trustregionmethodsareapopularchoiceforsolvingunconstrainedoptimizationproblemsbecausetheycombinethebenefitsofbothlocalandglobaloptimization.Ateachiteration,trustregionmethodsbuildaquadraticmodeloftheobjectivefunctionandsolveasub-problemtodetermineacandidatesolution.Thecandidatesolutionisacceptedifitisdeemedgoodenough,andthetrustregionradiusisupdatedtocontrolthestepsizeinthenextiteration.Alternatively,ifthecandidatesolutionisnotsatisfactory,thetrustregionradiusisreduced,andtheprocessrepeats. Onelimitationoftraditionaltrustregionmethodsisthattheyassumeamonotonicdecreaseintheobjectivefunctionateachiteration,whichmaynotholdtruefornon-smoothornon-convexfunctions.Nonmonotonictrustregionmethodsattempttoovercomethislimitationbyrelaxingthemonotonicityassumptionandacceptingsolutionsthatincreasetheobjectivefunctionundercertainconditions. However,nonmonotonictrustregionmethodsareoftendesignedapriori,meaningthattheparametersaresetbeforetheoptimizationprocessstarts.Thiscanleadtopoorperformanceiftheproblempropertieschangeduringoptimization.Adaptivetrustregionmethodsattempttoaddressthisissuebytuningtheparametersdynamicallyduringtheoptimizationprocess. NewNonmonotonicAdaptiveTrustRegionMethods Weproposeanewfamilyofnonmonotonicadaptivetrustregionmethodsthatupdatetheirparametersbasedontheobservedproblemproperties.Them