预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

求解含有高阶导数偏微分方程的局部间断Petrov-Galerkin方法(英文) Title:AStudyonLocallyDiscontinuousPetrov-GalerkinMethodsforPartialDifferentialEquationswithHigher-OrderDerivativePDEs Abstract: Partialdifferentialequations(PDEs)arewidelyusedtomodelvariousphysicalphenomenainthefieldsofphysics,engineering,andappliedmathematics.SolvingPDEsaccuratelyandefficientlyisachallengingtask,especiallywhendealingwithPDEsthatinvolvehigher-orderderivatives.Inthispaper,weinvestigatetheapplicationoflocallydiscontinuousPetrov-Galerkin(LD-PG)methodsforsolvingPDEswithhigher-orderderivativeterms.TheLD-PGmethodsprovidearobustandflexibleframeworkforhandlingsuchcomplexPDEsbycombiningthebenefitsofPetrov-GalerkinmethodsandlocaldiscontinuousGalerkinmethods. Introduction: Partialdifferentialequationswithhigher-orderderivativetermsareencounteredinmanyscientificandengineeringproblems.Examplesincludethewaveequation,heatdiffusionequation,andgeneralwavepropagationproblems.Traditionalnumericalmethods,suchasfinitedifferenceorfiniteelementapproaches,facechallengesinaccuratelyandefficientlysolvingthesePDEs,especiallywhenthesolutionpresentsdiscontinuities,sharpgradients,orboundarylayers.ThelocallydiscontinuousPetrov-Galerkinmethodsofferapromisingsolutiontoovercomethesedifficulties. Methodology: TheLD-PGmethodscombinetheflexibilityofPetrov-GalerkinmethodsandthelocaladaptabilityofthediscontinuousGalerkin(DG)methods.Theideaistoselectdifferentfiniteelementspacesforthetestandtrialfunctions,whichallowsfordiscontinuitiesinthesolutionwithineachelement.TheLD-PGmethodsintroducelocalstabilityandsmoothnessintothesolutionbyusingalocalstabilizationtermthatpenalizesjumpsinthesolutionacrosselementboundaries. ResultsandDiscussion: WeapplytheLD-PGmethodstoseveralPDEscontaininghigher-orderderivativeterms,includingthewaveequationanddiffusionequation.ThenumericalresultsdemonstratethatLD-PGmethodsarecapableofhandlingdiscontinuoussolutionsandcapturingsharpgradientsaccurately.Furthermore,themethodsshowimprovedstabilityandconvergencepropertiescomparedtot