预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课时跟踪检测(三十七)点、线、面之间的位置关系 一抓基础,多练小题做到眼疾手快 1.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确命题的序号是________. ①P∈a,P∈α⇒a⊂α; ②a∩b=P,b⊂β⇒a⊂β; ③a∥b,a⊂α,P∈b,P∈α⇒b⊂α; ④α∩β=b,P∈α,P∈β⇒P∈b. 答案:③④ 2.(2018·高邮期中)给出以下说法: ①不共面的四点中,任意三点不共线; ②有三个不同公共点的两个平面重合; ③没有公共点的两条直线是异面直线; ④分别和两条异面直线都相交的两条直线异面; ⑤一条直线和两条异面直线都相交,则它们可以确定两个平面. 其中正确结论的序号是________. 解析:在①中,不共面的四点中,任意三点不共线是正确命题,可以用反证法证明:若其中任意三点共线,则四点必共面,故①正确; 在②中,有三个不同公共点的两个平面重合或相交,故②错误; 在③中,没有公共点的两条直线是异面直线或平行直线,故③错误; 在④中,分别和两条异面直线都相交的两条直线异面或共面,故④错误; 在⑤中,一条直线和两条异面直线都相交,则由两条相交线能确定一个平面得它们可以确定两个平面,故⑤正确. 答案:①⑤ 3.若平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面. 解析:如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个. 答案:1或4 4.如图,平行六面体ABCD­A1B1C1D1中,既与AB共面又与CC1共面的棱有________条. 解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条. 答案:5 5.设a,b,c是空间中的三条直线,下面给出四个命题: ①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a∥c; ③若a与b相交,b与c相交,则a与c相交; ④若a⊂平面α,b⊂平面β,则a,b一定是异面直线. 上述命题中正确的命题是____(写出所有正确命题的序号). 解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错. 答案:① 二保高考,全练题型做到高考达标 1.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的______条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”). 解析:若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件. 答案:充分不必要 2.(2019·常州一中检测)如图,在长方体ABCD­A1B1C1D1中,点E,F分别为B1O和C1O的中点,长方体的各棱中,与EF平行的有______条. 解析:∵EF是△OB1C1的中位线, ∴EF∥B1C1. ∵B1C1∥BC∥AD∥A1D1,∴与EF平行的棱共有4条. 答案:4 3.下列命题中,真命题的个数为________. ①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合; ②两条直线可以确定一个平面; ③空间中,相交于同一点的三条直线在同一平面内; ④若M∈α,M∈β,α∩β=l,则M∈l. 解析:根据公理3,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2. 答案:2 4.已知l,m,n为两两垂直的三条异面直线,过l作平面α与直线m垂直,则直线n与平面α的关系是________. 解析:因为l⊂α,且l与n异面,所以n⊄α,又因为m⊥α,n⊥m,所以n∥α. 答案:n∥α 5.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且eq\f(CF,CB)=eq\f(CG,CD)=eq\f(2,3),则下列说法正确的是______(填序号). ①EF与GH平行; ②EF与GH异面; ③EF与GH的交点M可能在直线AC上,也可能不在直线AC上; ④EF与GH的交点M一定在直线AC上. 解析:连结EH,FG,如图所示. 依题意,可得EH∥BD,FG∥BD, 故EH∥FG,所以E,F,G,H共面. 因为EH=eq\f(1,2)BD,FG=eq\f(