预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第十二章薄板的小挠度弯曲问题 知识点 薄板的基本概念 薄板的位移与应变分量 薄板广义力 薄板小挠度弯曲问题基本方程 薄板自由边界条件的简化 薄板的莱维解 矩形简支薄板的挠度基尔霍夫假设 薄板应力 广义位移与薄板的平衡 薄板的典型边界条件 薄板自由边界角点边界条件 挠度函数的分解 一、内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二、重点 1、基尔霍夫假设;2、薄板的应力、广义力和广义位移;3、薄板小挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。 §12.1薄板的基本概念和基本假设 学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1、薄板基本概念;2、基尔霍夫假设 1、薄板基本概念 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板 薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用表示。平分板厚的平面称为板的中面。 设薄板宽度为a、b,假如板的最小特征尺寸为b,如果b≥1/5,称为厚板;如果/b≤1/80,称为膜板;如果1/80≤/b≤1/5,称为薄板。厚板属于弹性力学空间问题,而膜板只能承受膜平面内部的张力,因此,板的弯曲问题主要是薄板。 如果薄板的外载荷作用于板的中面,而且不发生失稳问题时,属于平面应力问题讨论。 如果外载荷为垂直于板的中面作用的横向载荷,则板主要变形为弯曲变形。中面在薄板弯曲时变形成为曲面,中面沿垂直方向,即横向位移称为挠度。 对于薄板,仍然有相当的弯曲刚度,如果挠度小于厚度的五分之一,属于小挠度问题;如果超过这个界限,属于大变形问题。本章只讨论薄板的小挠度弯曲问题。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 2、基尔霍夫假设 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。设中面为xy平面,则 1、变形前垂直于中面的直线变形后仍然保持直线,而且长度不变。这相当于梁的弯曲变形平面假设,如图所示 根据这一假设,z=zx=zy=0。 2、垂直于中面方向的应力分量z,zx,zy远小于其他应力分量,其引起的变形可以不计,但是对于维持平衡是必要的,这相当于梁的弯曲无挤压应力假设。 3、薄板弯曲时,中面各点只有垂直中面的位移w,没有平行中面的位移,即 uz=0=0,vz=0=0,w=w(x,y) 根据这一假设,板的中面将没有变形发生。板的中面位移函数w(x,y)称为挠度函数。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析,实践证明是完全正确的。 根据基尔霍夫假设,薄板弯曲的基本未知量可以取挠度函数w(x,y)。下面的工作是通过平衡微分方程、几何方程和本构方程,用挠度函数w(x,y)表达薄板内部任意一点的位移、应力、应变和内力等,然后利用薄板单元体的