椭圆的常见题型及解法一.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
椭圆的常见题型及解法一.docx
椭圆的常见题型及其解法(一)椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助.一、椭圆的焦半径椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。1.公式的推导设P(,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。证法1:。因为,所以∴又因为,所以∴,证法2:
椭圆的常见题型及解法二.docx
椭圆的常见题型及解法(二)一对称问题平面解析几何常遇到含参数的对称问题,常困扰学生思维.其实平面解析几何所有的对称只有以下四类,分别为“点关于点对称”;“点关于直线对称”;“曲线关于点对称”;“曲线关于直线对称”.①点A关于B的对称点为C,点B为A、C的中点,由中点坐标公式有:;②设点A(x1,y1)关于直线:ax+by+c=0的对称点为C(x,y),由AC直线与垂直,且AB的中点在上,有:(当直线中a=0或b=0时,上面结论也正确)③曲线F(x,y)=0关于点B(a,b)对称的曲线,在曲线F(x,y)=
完整word版椭圆的常见题型及解法一.doc
椭圆的常见题型及其解法(一)椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助.一、椭圆的焦半径椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。1.公式的推导设P(,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。证法1:。因为,所以∴又因为,所以∴,证法2:
椭圆的常见题型.docx
高中数学重难点椭圆一、考点、热点回顾1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是____
椭圆常见题型总结.pdf
椭圆常见题型总结1、椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决;x2y2椭圆1(ab0)上一点P(x,y)和焦点F(c,0),F(c,0)为顶点的a2b20012PF1F2中,F1PF2,则当P为短轴端点时最大,且①PF1PF22a;22②2;4cPF1PF22PF1PF2cos1③SPFPFsin=b2tan(b短轴长)PF1F22122x2y22、直线与椭圆的位置关系:直线ykxb与椭圆1(ab0)交于a2b2两点,则22