预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

主成分分析与因子分析及SPSS实现(一):原理与方法 (2014-09-0813:33:57) 转载▼ 一、主成分分析 (1)问题提出 在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性? 这时,主成分分析隆重登场。 (2)主成分分析的原理 主成分分析的本质是坐标的旋转变换,将原始的n个变量进行重新的线性组合,生成n个新的变量,他们之间互不相关,称为n个“成分”。同时按照方差最大化的原则,保证第一个成分的方差最大,然后依次递减。这n个成分是按照方差从大到小排列的,其中前m个成分可能就包含了原始变量的大部分方差(及变异信息)。那么这m个成分就成为原始变量的“主成分”,他们包含了原始变量的大部分信息。 注意得到的主成分不是原始变量筛选后的剩余变量,而是原始变量经过重新组合后的“综合变量”。 我们以最简单的二维数据来直观的解释主成分分析的原理。假设现在有两个变量X1、X2,在坐标上画出散点图如下: 可见,他们之间存在相关关系,如果我们将坐标轴整体逆时针旋转45°,变成新的坐标系Y1、Y2,如下图: 根据坐标变化的原理,我们可以算出: Y1=sqrt(2)/2*X1+sqrt(2)/2*X2 Y2=sqrt(2)/2*X1-sqrt(2)/2*X2 其中sqrt(x)为x的平方根。 通过对X1、X2的重新进行线性组合,得到了两个新的变量Y1、Y2。 此时,Y1、Y2变得不再相关,而且Y1方向变异(方差)较大,Y2方向的变异(方差)较小,这时我们可以提取Y1作为X1、X2的主成分,参与后续的统计分析,因为它携带了原始变量的大部分信息。 至此我们解决了两个问题:降维和消除共线性。 对于二维以上的数据,就不能用上面的几何图形直观的表示了,只能通过矩阵变换求解,但是本质思想是一样的。 二、因子分析 (一)原理和方法: 因子分析是主成分分析的扩展。 在主成分分析过程中,新变量是原始变量的线性组合,即将多个原始变量经过线性(坐标)变换得到新的变量。 因子分析中,是对原始变量间的内在相关结构进行分组,相关性强的分在一组,组间相关性较弱,这样各组变量代表一个基本要素(公共因子)。通过原始变量之间的复杂关系对原始变量进行分解,得到公共因子和特殊因子。将原始变量表示成公共因子的线性组合。其中公共因子是所有原始变量中所共同具有的特征,而特殊因子则是原始变量所特有的部分。因子分析强调对新变量(因子)的实际意义的解释。 举个例子: 比如在市场调查中我们收集了食品的五项指标(x1-x5):味道、价格、风味、是否快餐、能量,经过因子分析,我们发现了: x1=0.02*z1+0.99*z2+e1 x2=0.94*z1-0.01*z2+e2 x3=0.13*z1+0.98*z2+e3 x4=0.84*z1+0.42*z2+e4 x5=0.97*z1-0.02*z2+e1 (以上的数字代表实际为变量间的相关系数,值越大,相关性越大) 第一个公因子z1主要与价格、是否快餐、能量有关,代表“价格与营养” 第二个公因子z2主要与味道、风味有关,代表“口味” e1-5是特殊因子,是公因子中无法解释的,在分析中一般略去。 同时,我们也可以将公因子z1、z2表示成原始变量的线性组合,用于后续分析。 (二)使用条件: (1)样本量足够大。通常要求样本量是变量数目的5倍以上,且大于100例。 (2)原始变量之间具有相关性。如果变量之间彼此独立,无法使用因子分析。在SPSS中可用KMO检验和Bartlett球形检验来判断。 (3)生成的公因子要有实际的意义,必要时可通过因子旋转(坐标变化)来达到。 三、主成分分析和因子分析的联系与区别 联系:两者都是降维和信息浓缩的方法。生成的新变量均代表了原始变量的大部分信息且互相独立,都可以用于后续的回归分析、判别分析、聚类分析等等。 区别: (1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。 (2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。 下一篇文章,将介绍主成分分析和因子分析的在SPSS中的实现。 主成分分析与因子分析及SPSS实现(二):实例讨论 (2014-09-1306:34:09) 转载▼ 标签: spss 教育 统计 因子分析分类:SPSSSPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主