预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

武汉市学校2016—2017学年度下学期期中检测 八年级数学试卷 考试时间:2017年4月26日13:40---15:40全卷满分:120分命题人:魏年一审题人:龙应时 ★祝考试顺利★ 考生注意: 1、本试卷,满分120分,考试用时120分钟。 2、全部答案必须在答题卷上完成,请认真核对每题答案是否在答题卷的对应框中,答在其他位置无效。 3、答题前请认真阅读答题卡的“注意事项”,考试结束后,请将答题卷上交。 一、选择题(本大题共10小题,共30分) 1.估算的值是() A.在0和1之间B.在1和2之间C.在2和3之间D.在3和4之间 2.下列计算正确的是() A.B.C.D. 3.要使二次根式有意义,则x的取值范围是() A.x≠3B.x≤3C.x>3D.x≥3 4.如图,在Rt△AED中,∠E=90°,AE=3,ED=4,以AD为边在△AED的外侧作正方形ABCD,则正方形ABCD的面积是() A.5B.25C.7D.10 5.下列各组数中不能作为直角三角形的三边长的是() A.3、5、7B.5、12、13C.1、1、D.1、、2 6.如图,在ABCD中,若AB=1,AD=2,则ABCD的周长为() A.3B.4C.5D.6 7.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是() A.四边形AEDF是平行四边形 B.如果∠BAC=90°,那么四边形AEDF是矩形 C.如果AD⊥EF,那么四边形AEDF是菱形 D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形 8.如图,O是矩形ABCD的对角线的交点,M是AD的中点.若BC=8,OB=5,则OM的长为() A.1B.2C.3D.4 9.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF.你认为() A.仅小明对B.仅小亮对C.两人都对D.两人都不对 10.如图,△ABC中,∠BAC=60°,∠B=45°,AB=2,点D是BC上的一个动点,D点关于AB,AC的对称点分别是E和F,四边形AEGF是平行四边形,则四边形AEGF的面积的最小值是(). A.1B.C.D. 二、填空题(本大题共6小题,共18分) 11.化简:=____________. 12.如图,数轴上点A表示数-1,点B表示数1,过数轴上的点B作BC垂直于数轴,若BC=1,以A为圆心,AC为半径作圆弧交数轴于点P,那么点P所表示的数是______. 13.若三角形周长为24,三边之比为3:4:5,则三角形面积为____________. 14.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=____________. 15.如图,直线L1,L2,L3分别过正方形ABCD的三个顶点A,D,C,且相互平行,若L1,L2的距离为2,L2,L3的距离为4,则正方形的对角线长为_______________. 16.如图,△ABC中,∠ABC=45゜,∠BCA=30゜,点D在BC上.点E在△ABC外,且AD=AE=CE,AD⊥AE,则=____________. 三、解答题(本大题共8小题,共72分) 17.(本题8分)计算(1);(2). 18.(本题8分)已知:,求的值. 19.(本题8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形. (1)在图1中,画一个正方形,使它的面积是10; (2)在图2中,画一个三角形,使它的三边分别为,并计算三角形的面积及边上的高. . 20.(本题8分)如图,在△ABC中,CD⊥AB于点D, 若AB=5,CD=,∠BCD=30°,求AC的长. 21.(本题8分)如图,矩形ABCD的对角线AC、BD相交于点O, CE∥BD,DE∥AC.若AC=4,∠DAC=60°,求四边形CODE 的周长和面积. 22.(本题10分)如图,已知ABCD的对角线AC、BD交于O,且∠BAC=∠DAC. (1)求证:ABCD是菱形; (2)F为AD上一点,连结BF交AC于E,且AE=AF,求证:AO=(AF+AB). 23.(本题10分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE. =1\*GB3①求证:CE=CF; =2\*GB3②若G在AD上,且∠GCE=∠45°,则线段GE、BE、GD之间有何数量关系?试证明你的结论; (2)请你根据(1)中的经验完成下面的问题:如图2,在四边形ABCD中,AD∥BC