预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第四章动态规划 §1引言 1.1动态规划的发展及研究内容 动态规划(dynamicprogramming)是运筹学的一个分支,是求解多阶段决策问题的最优化方法。20世纪50年代初R.E.Bellman等人在研究多阶段决策过程(multistepdecisionprocess)的优化问题时,提出了著名的最优性原理(principleofoptimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957年出版了他的名著《DynamicProgramming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1最短路线问题 下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由到距离最短(或费用最省)的路线。 例2生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-timedecisionprocess)和连续时间决策过程(continuous-timedecisionprocess);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministicdecisionprocess)和随机性决策过程(stochasticdecisionprocess),其中应用最广的是确定性多阶段决策过程。 §2基本概念、基本方程和计算方法 2.1动态规划的基本概念和基本方程 一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。 2.1.1阶段 阶段(step)是对整个过程的自然划分。通常根据时间顺序或空间顺序特征来划分阶段,以便按阶段的次序解优化问题。阶段变量一般用表示。在例1中由出发为,由出发为,依此下去从出发为,共个阶段。在例2中按照第一、二、三、四季度分为,共四个阶段。 2.1.2状态 状态(state)表示每个阶段开始时过程所处的自然状况。它应能描述过程的特征并且无后效性,即当某阶段的状态变量给定时,这个阶段以后过程的演变与该阶段以前各阶段的状态无关。通常还要求状态是直接或间接可以观测的。 描述状态的变量称状态变量(statevariable)。变量允许取值的范围称允许状态集合(setofadmissiblestates)。用表示第阶段的状态变量,它可以是一个数或一个向量。用表示第阶段的允许状态集合。在例1中可取,或将定义为,则或,而。 个阶段的决策过程有个状态变量,表示演变的结果。在例1中取,或定义为,即。 根据过程演变的具体情况,状态变量可以是离散的或连续的。为了计算的方便有时将连续变量离散化;为了分析的方便有时又将离散变量视为连续的。 状态变量简称为状态。 2.1.3决策 当一个阶段的状态确定后,可以作出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision),在最优控制问题中也称为控制(control)。 描述决策的变量称决策变量(decisionvariable),变量允许取值的范围称允许决策集合(setofadmissibledecisions)。用表示第阶段处于状态时的决策变量,它是的函数,用表示的允许决策集合。在例1中可取或,可记作,而。 决策变量简称决策。 2.1.4策略 决策组成的序列称为策略(policy)。由初始状态开始的全过程的策略记作,即 . 由第阶段的状态开始到终止状态的后部子过程的策略