预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016年普通高等学校招生全国统一考试(江苏卷) 数学 本卷满分200分,考试时间150分钟. 参考公式: 样本数据x1,x2,…,xn的方差s2=1n∑i=1n(xi-x)2,其中x=1n∑i=1nxi. 棱柱的体积V=Sh,其中S是棱柱的底面积,h是高. 棱锥的体积V=13Sh,其中S是棱锥的底面积,h是高. 数学Ⅰ(共160分) 一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=. 2.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是. 3.在平面直角坐标系xOy中,双曲线x27-y23=1的焦距是. 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是. 5.函数y=3-2x-x2的定义域是. 6.下图是一个算法的流程图,则输出的a的值是. 7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是. 8.已知{an}是等差数列,Sn是其前n项和.若a1+a22=-3,S5=10,则a9的值是. 9.定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是. 10.如图,在平面直角坐标系xOy中,F是椭圆x2a2+y2b2=1(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是. 11.设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=x+a,-1≤x<0,25-x,0≤x<1,其中a∈R.若f-52=f92,则f(5a)的值是. 12.已知实数x,y满足x-2y+4≥0,2x+y-2≥0,3x-y-3≤0,则x2+y2的取值范围是. 13.如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,BA·CA=4,BF·CF=-1,则BE·CE的值是. 14.在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是. 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 在△ABC中,AC=6,cosB=45,C=π4. (1)求AB的长; (2)求cosA-π6的值. 16.(本小题满分14分) 如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1. 求证:(1)直线DE∥平面A1C1F; (2)平面B1DE⊥平面A1C1F. 17.(本小题满分14分) 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍. (1)若AB=6m,PO1=2m,则仓库的容积是多少? (2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大? 18.(本小题满分16分) 如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4). (1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程; (2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程; (3)设点T(t,0)满足:存在圆M上的两点P和Q,使得TA+TP=TQ,求实数t的取值范围. 19.(本小题满分16分) 已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (1)设a=2,b=12. ①求方程f(x)=2的根; ②若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求实数m的最大值; (2)若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab的值. 20.(本小题满分16分) 记U={1,2,…,100}.对数列{an}(n∈N*)和U的子集T,若T=⌀,定义ST=0;若T={t1,t2,…,tk},定义ST=at1+at2+…+atk.例如:T={1,3,66}时,ST=a1+a3+a66.现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30. (1)求数列{an}的通项公式; (2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:ST<ak+1; (3)设C⊆U,D⊆U,SC≥SD,求证:SC+SC∩D≥2SD. 数学Ⅱ(附加题,共40分) 21.【选做题】本题包括A、