预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课题平面向量的坐标表示及数量积编号03011考点定位1、理解平面向量的坐标表示 2、掌握平面向量的数量积 3、理解平面向量的平行与垂直 4、了解平面向量的应用今日复习1.平面向量的坐标表示 分别取与x轴、y轴方向相同的两个单位向量SKIPIF1<0、SKIPIF1<0作为基底,对于一个向量SKIPIF1<0,有且只有一对实数x、y,使得SKIPIF1<0=xSKIPIF1<0+ySKIPIF1<0.我们把(x、y)叫做向量SKIPIF1<0的直角坐标,记作.并且|SKIPIF1<0|=. 2.向量的坐标表示与起点为的向量是一一对应的关系. 3.平面向量的坐标运算: 若SKIPIF1<0=(x1、y1),SKIPIF1<0=(x2、y2),λ∈R,则: SKIPIF1<0+SKIPIF1<0= SKIPIF1<0-SKIPIF1<0= λSKIPIF1<0= 已知A(x1、y1),B(x2、y2),则SKIPIF1<0=. 4.两个向量SKIPIF1<0=(x1、y1)和SKIPIF1<0=(x2、y2)共线的充要条件是. 5、两个向量的夹角:已知两个非零向量SKIPIF1<0和SKIPIF1<0,过O点作SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,则∠AOB=θ(0°≤θ≤180°)叫做向量SKIPIF1<0与SKIPIF1<0的.当θ=0°时,SKIPIF1<0与SKIPIF1<0;当θ=180°时,SKIPIF1<0与SKIPIF1<0;如果SKIPIF1<0与SKIPIF1<0的夹角是90°,我们说SKIPIF1<0与SKIPIF1<0垂直,记作. 6、两个向量的数量积的定义:已知两个非零向量SKIPIF1<0与SKIPIF1<0,它们的夹角为θ,则数量叫做SKIPIF1<0与SKIPIF1<0的数量积(或内积),记作SKIPIF1<0·SKIPIF1<0,即SKIPIF1<0·SKIPIF1<0=.规定零向量与任一向量的数量积为0.若SKIPIF1<0=(x1,y1),SKIPIF1<0=(x2,y2),则SKIPIF1<0·SKIPIF1<0=. 7、向量的数量积的几何意义: |SKIPIF1<0|cosθ叫做向量SKIPIF1<0在SKIPIF1<0方向上的投影(θ是向量SKIPIF1<0与SKIPIF1<0的夹角). SKIPIF1<0·SKIPIF1<0的几何意义是,数量SKIPIF1<0·SKIPIF1<0等于 . 8、向量数量积的性质:设SKIPIF1<0、SKIPIF1<0都是非零向量,SKIPIF1<0是单位向量,θ是SKIPIF1<0与SKIPIF1<0的夹角. ⑴SKIPIF1<0·SKIPIF1<0=SKIPIF1<0·SKIPIF1<0= ⑵SKIPIF1<0⊥SKIPIF1<0SKIPIF1<0 ⑶当SKIPIF1<0与SKIPIF1<0同向时,SKIPIF1<0·SKIPIF1<0=;当SKIPIF1<0与SKIPIF1<0反向时,SKIPIF1<0·SKIPIF1<0=. ⑷cosθ=. ⑸|SKIPIF1<0·SKIPIF1<0|≤ 9、向量数量积的运算律: ⑴SKIPIF1<0·SKIPIF1<0=; ⑵(λSKIPIF1<0)·SKIPIF1<0==SKIPIF1<0·(λSKIPIF1<0) ⑶(SKIPIF1<0+SKIPIF1<0)·SKIPIF1<0=课本经典例、习题P71:eg1,eg3p74:eg4p75:ex2,ex5p77:ex9p81:eg3p83:ex7,ex8,ex11课前热身自我纠错1、已知SKIPIF1<0=(-1,3),SKIPIF1<0=(2,-1),若(kSKIPIF1<0+SKIPIF1<0)⊥(SKIPIF1<0-2SKIPIF1<0),则k=. 2、已知|SKIPIF1<0|=3,|SKIPIF1<0|=5,且SKIPIF1<0·SKIPIF1<0=12,则向量SKIPIF1<0在向量SKIPIF1<0的方向上的投影为. 3、已知△A