预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于ARIMA模型对我国城镇单位就业人员工资总额的预测 Title:ForecastingTotalWagesofUrbanUnitsinChinaUsingtheARIMAModel Abstract: ThetotalwagesofurbanunitsinChinaplayacrucialroleintheeconomicdevelopmentofthecountry.Accurateforecastingofthisvariablecanhelppolicymakers,businesses,andindividualsmakeinformeddecisionsanddevelopeffectivestrategies.Inthisstudy,theAutoRegressiveIntegratedMovingAverage(ARIMA)modelisusedtoforecastthetotalwagesofurbanunitsinChina.ByanalyzinghistoricaldataandemployingtheARIMAmodel,predictionscanbemadeforthefuturetrendofwagesinurbanareas.Thefindingsofthisresearchcanprovidevaluableinsightsforpolicymakersandstakeholders,supportingevidence-baseddecision-makinginthelabormarket. 1.Introduction Thetotalwagesofurbanunitsrepresentanessentialindicatorofeconomicgrowthandwellbeinginacountry.Theyreflecttheoverallincomelevelofaworkforceandprovidevaluableinformationforassessingthelivingstandardsofurbanresidents.Furthermore,totalwagesalsohaveimportantimplicationsforconsumptionpatterns,GDPgrowth,andsocialstability. Giventhesignificanceoftotalwages,accurateforecastingisessential.Theaccuracyoftheforecasteddatacaninfluencegovernmentpolicies,businessplanning,andpersonalfinancialdecisions.TheARIMAmodeliswidelyusedfortimeseriesforecastingduetoitsabilitytocapturebothtrendandseasonalityinthedata.ThisstudyaimstoutilizeARIMAmodelingtoforecastthetotalwagesofurbanunitsinChina. 2.Methodology 2.1DataCollection Toconductthisresearch,acomprehensivedatasetofhistoricaltotalwagesofurbanunitsinChinaisrequired.Thedatacanbeobtainedfromofficialstatisticalsources,suchastheNationalBureauofStatisticsofChina.Thedatasetshouldcoverasufficientperiod,allowingfortheanalysisoftrendsandseasonalitypatterns. 2.2ARIMAModel TheARIMAmodelconsistsofthreecomponents:Autoregression(AR),Integration(I),andMovingAverage(MA).TheARcomponentmodelsthelinearrelationshipbetweenanobservationandtheobservationsinprecedingperiods.TheIcomponentallowsforthedifferencingofthedatatomakeitstationary,removingtrendsandseasonality.TheMAcomponentmodels