预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共87页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第二章非参数统计分析演示文稿*思考的要点第一节符号检验 第二节Cox-Stuart趋势检验 第三节游程检验 第四节Wilcoxon符号秩检验 第五节正态记分检验 第六节与参数检验相对效率比较符号检验的统计量为B=得正号的个数。精确的符号检验是指检验的p值是由精确的概率给出的。我们利用正号和负号的数目,来检验某假设,这是一种最简单的非参数方法。 【例4】联合国人员在世界上71个大城市的生活花费指数(上海是44位,数据为63.5)按自小至大的次序排列如下。有人说64应该是这种大城市花费指数的中位数,有人说64顶多是低位数(下四分位数),进行检验。数据如下:122.4,109.4,105,104.6,104.1,100.6,100,99.3,99.1,98.2,97.5,95.2,92.8,91.8,90.8,90.3,89.5,89.4,86.4,86.2,85.7,82.6,81,80.9,79.1,77.9,77.7,76.8,76.6,76.2,74.5,74.3,73.9,71.7,71.2,67.7,66.7,66.2,65.4,65.3,65.3,65.3,64.6,63.5,62.7,60.8,58.2,55.5,55.3,55,54.9,52.7,51.8,49.9,48.2,47.6,46,45.8,45.2,41.9,38.8,37.7,37.5,36.5,36.4,32.7,32.7,32.2,29.1,27.8,27.8目前八页\总数八十七页\编于七点通常在正态总体分布的假设下,关于总体均值的假设检验和区间估计是用与t检验有关的方法进行的。然而,在本例中,总体分布是未知的。为此,首先看该数据的直方图从图中很难说这是什么分布。假定用总体中位数来表示中间位置,这意味着样本点,取大于me的概率应该与取小于me的概率相等。所研究的问题,可以看作是只有两种可能“成功”或“失败”。符号检验的思路,记 成功:X-0大于零,即大于中位数M,记为“+”; 失败:X-0小于零,即小于中位数M,记为“-”。 令S+=得正符号的数目 S-=得负符号得数目 可以知道S+或S—均服从二项分布B(65,0.5)。则可以用来作检验的统计量。其假设为:关于非参数检验统计量需要说明的问题假设该检验R的代码 x<-c(122.4,109.4,105,104.6,104.1,100.6,100,99.3,99.1,98.2,97.5,95.2,92.8,91.8,90.8,90.3,89.5,89.4,86.4,86.2,85.7,82.6,81,80.9,79.1,77.9,77.7,76.8,76.6,76.2,74.5,74.3,73.9,71.7,71.2,67.7,66.7,66.2,65.4,65.3,65.3,65.3,64.6,63.5,62.7,60.8,58.2,55.5,55.3,55,54.9,52.7,51.8,49.9,48.2,47.6,46,45.8,45.2,41.9,38.8,37.7,37.5,36.5,36.4,32.7,32.7,32.2,29.1,27.8,27.8) y=sum(sign(x-64)==1) pbinom(71-y,71,0.50)二、大样本的情形第二节Cox-Stuart趋势检验目前十六页\总数八十七页\编于七点三种假设:在这个例子中n=12,因而c=6。这6个对子为(x1,x7),(x2,x8),(x3,x9),(x4,x10),(x5,xl1),(x6,x12)。用每一对的两元素差Di=xi-xi+c的符号来衡量增减。令S+为正Di=xi-xi+c的数目,而令S-为负的Di=xi-xi+c的数。显然当正号太多时,即S+很大时(或S-很小时),有下降趋势,反之,则有增长趋势.在没有趋势的零假设下它们应服从二项分布b(6,0.5),这里n为对子的数目(不包含差为0的对子)。该检验在某种意义上是符号检验的一个特例。 类似于符号检验,对于上面1,2,3三种检验,分别取检验统计量K=S+,K=S-和K=min(S+,S-)。在本例中,这6个数据对的符号为5负1正,所以我们不能拒绝原假设。【例6】天津机场从1995年1月到2003年12月的108个月旅客旅客吞吐量数据如下:目前二十二页\总数八十七页\编于七点SPSS无此检验,我们用R完成该检验,代码如下。补充:检验的p值比如是左侧检验,如果总体真实的中位数比假设的小,则检验的统计量w+表现出过小,w-表现出大,检验的p值为p(w+w小),此时用的最小的统计量。对于右侧检验,如果总体真实的中位数比假设的大,则检验的统计量w+表现出过大,w-表现出小。检验的p值为p(w+w大)。实际上 p(w+w大) =p(-w+-w大) =p[N